Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med Technol ; 50(3): 186-194, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35197272

RESUMO

In recent years, there has been an influx of new tracers into the field of nuclear medicine and molecular imaging. Most of those that have been Food and Drug Administration-approved for clinical imaging exploit various mechanisms of protein biochemistry and molecular biology to bring about their actions, such as amino acid metabolism, protein folding, receptor-ligand interactions, and surface transport mechanisms. In this review, we attempt to paint a clear picture of the basic biochemistry and molecular biology of protein structure, translation, transcription, posttranslational modifications, and protein targeting, in the context of the various radiopharmaceuticals currently used clinically, all in an easy-to-understand language for entry-level technologists in the field. Tracer characteristics, including indications, dosage, injection-to-imaging time, and the logic behind the normal and pathophysiologic biodistribution of these newer molecular tracers, are also discussed.


Assuntos
Aminoácidos , Compostos Radiofarmacêuticos , Ligantes , Biologia Molecular , Distribuição Tecidual , Estados Unidos
2.
Biology (Basel) ; 10(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34827141

RESUMO

Owing to its unique redox properties, cerium oxide (nanoceria) nanoparticles have been shown to confer either radiosensitization or radioprotection to human cells. We investigated nanoceria's ability to modify cellular health and reactive oxygen species (ROS) at various absorbed doses (Gray) of ionizing radiation in MDA-MB231 breast carcinoma cells. We used transmission electron microscopy to visualize the uptake and compartmental localization of nanoceria within cells at various treatment concentrations. The effects on apoptosis and other cellular health parameters were assessed using confocal fluorescence imaging and flow cytometry without and with various absorbed doses of ionizing radiation, along with intracellular ROS levels. Our results showed that nanoceria were taken up into cells mainly by macropinocytosis and segregated into concentration-dependent large aggregates in macropinosomes. Confocal imaging and flow cytometry data showed an overall decrease in apoptotic cell populations in proportion to increasing nanoparticle concentrations. This increase in cellular health was observed with a corresponding reduction in ROS at all tested absorbed doses. Moreover, this effect appeared pronounced at lower doses compared to unirradiated or untreated populations. In conclusion, internalized nanoceria confers radioprotection with a corresponding decrease in ROS in MDA-MB231 cells, and this property confers significant perils and opportunities when utilized in the context of radiotherapy.

3.
Biochem Biophys Rep ; 22: 100745, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32099911

RESUMO

Cerium oxide nanoparticles have been shown to sensitize cancer cells to radiation damage. Their unique redox properties confer excellent therapeutic potential by augmenting radiation dose with reactive oxygen species mediating bystander effects. Owing to its metallic properties, cerium oxide nanoparticles can be visualized inside cells using reflected light and optical sectioning. This can be advantageous in settings requiring none or minimal sample preparation and modification. We investigated the use of reflectance imaging for the detection of unmodified nanoceria in MDA MB231 breast cancer cells along with differential interference contrast imaging and fluorescent nuclear labeling. We also performed studies to evaluate the uptake capability, cellular toxicity and redox properties of nanocaria in these cells. Our results demonstrate that reflectance structured illumination imaging can effectively localize cerium oxide nanoparticles in breast cancer cells, and when combining with differential interference contrast and fluorescent cell label imaging, effective compartmental localization of the nanoparticles can be achieved. The total number of cells taking up the nanoparticles and the amount of nanoparticle uptake increased significantly in proportion to the dose, with no adverse effects on cell survival. Moreover, significant reduction in reactive oxygen species was also observed in proportion to increasing nanoceria concentrations attesting to its ability to modulate oxidative stress. In conclusion, this work serves as a pre-clinical scientific evaluation of the effective use of reflectance structured illumination imaging of cerium oxide nanoparticles in breast cancer cells and the safe use of these nanoparticles in MDA MB231 cells for further therapeutic applications.

4.
World J Exp Med ; 5(3): 164-81, 2015 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-26309818

RESUMO

Tuberculosis is one of the leading infectious diseases plaguing mankind and is mediated by the facultative pathogen, Mycobacterium tuberculosis (MTB). Once the pathogen enters the body, it subverts the host immune defenses and thrives for extended periods of time within the host macrophages in the lung granulomas, a condition called latent tuberculosis (LTB). Persons with LTB are prone to reactivation of the disease when the body's immunity is compromised. Currently there are no reliable and effective diagnosis and treatment options for LTB, which necessitates new research in this area. The mycobacterial proteins and genes mediating the adaptive responses inside the macrophage is largely yet to be determined. Recently, it has been shown that the mce operon genes are critical for host cell invasion by the mycobacterium and for establishing a persistent infection in both in vitro and in mouse models of tuberculosis. The YrbE and Mce proteins which are encoded by the MTB mce operons display high degrees of homology to the permeases and the surface binding protein of the ABC transports, respectively. Similarities in structure and cell surface location impute a role in cell invasion at cholesterol rich regions and immunomodulation. The mce4 operon is also thought to encode a cholesterol transport system that enables the mycobacterium to derive both energy and carbon from the host membrane lipids and possibly generating virulence mediating metabolites, thus enabling the bacteria in its long term survival within the granuloma. Various deletion mutation studies involving individual or whole mce operon genes have shown to be conferring varying degrees of attenuation of infectivity or at times hypervirulence to the host MTB, with the deletion of mce4A operon gene conferring the greatest degree of attenuation of virulence. Antisense technology using synthetic siRNAs has been used in knocking down genes in bacteria and over the years this has evolved into a powerful tool for elucidating the roles of various genes mediating infectivity and survival in mycobacteria. Molecular beacons are a newer class of antisense RNA tagged with a fluorophore/quencher pair and their use for in vivo detection and knockdown of mRNA is rapidly gaining popularity.

5.
J Nucl Med Technol ; 37(2): 63-71; quiz 72-3, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19447852

RESUMO

This article addresses the emerging technology of PET coupled with MRI, or PET/MRI, which could become the technology of choice in the future for many reasons. Some of these reasons will be discussed, along with a historical account of the field of MRI and how this modality has evolved to include many aspects of molecular and functional imaging. After reading this article, nuclear medicine technologists should be able to provide an overview of the history of MRI, discuss PET and how it is mainly used today melded to CT as PET/CT, discuss how MRI is used diagnostically, explain how PET technology and MRI technology are able to function simultaneously together as PET/MRI, discuss some issues concerning who will operate these new units, and discuss the possibility that PET/MRI could be the blended technology of choice in the future.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/tendências , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons/tendências , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/economia , Tomografia por Emissão de Pósitrons/economia , Doses de Radiação , Mecanismo de Reembolso , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...