Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 184: 105853, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584493

RESUMO

Artificial structures often support depauperate communities compared to natural rocky shores. Understanding variation in ecological success across shore types, particularly regarding habitat-forming species or those with structuring roles, is important to determine how artificial structure proliferation may influence ecosystem functioning and services. We investigated the population structure, sex ratio and reproductive potential of limpets on natural shores and artificial structures on Irish Sea coasts. Limpets were generally less abundant and Patella vulgata populations were often male dominated on artificial structures compared to natural shores, suggesting that shore type may influence these factors. P. vulgata length varied across sites within the Irish Sea (nested in coast and shore type) in autumn/winter, as well as temporally across sites along the Welsh coast. There was no difference in the proportion of P. vulgata in advanced stages of gonad development across shore types. The results suggest that rip-rap artificial structures may provide a habitat comparable to natural shores, however, the addition of ecological engineering interventions on artificial structures may allow limpet populations to better approximate those on natural shores.


Assuntos
Ecossistema , Gastrópodes , Animais , Masculino , Estações do Ano , Razão de Masculinidade
2.
Mar Environ Res ; 168: 105324, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33845257

RESUMO

Artificial structures are widespread features of coastal marine environments. These structures, however, are poor surrogates of natural rocky shores, meaning they generally support depauperate assemblages with reduced population sizes. Little is known about sub-lethal effects of such structures, for example, in terms of demographic properties and reproductive potential that may affect the dynamics and long-term viability of populations. Such understanding is particularly important for ecosystem engineer species, such as the intertidal seaweed Fucus vesiculosus. In this study, F. vesiculosus was sampled on eight artificial structures and eight natural shores along the east coast of Ireland and the west coast of Wales. Algal percentage cover, biomass, density of individuals, and growth rate did not differ between artificial and natural shores. Growth and reproductive cycles were consistent with previous studies for this species. While there was considerable variation from site to site, on average, populations on natural shores produced a higher number of mature receptacles during the peak reproductive period in April, and lower rates of dislodgement than on artificial structures. As F. vesiculosus reach peak reproductive output after 24 months, this suggests that individuals may be removed from populations on artificial structures before reaching their full reproductive potential. In this case, this did not influence density, percentage cover, or biomass, which suggests that F. vesiculosus populations on artificial structures may function similarly to those on natural shores if supported by suitable source populations, but potentially may not persist otherwise.


Assuntos
Fucus , Ecossistema , Fertilidade , Humanos , Irlanda , País de Gales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...