Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-516323

RESUMO

The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localises to mitochondria during infection, where it inhibits innate immunity by restricting IFN-{beta} production, but not NF-{kappa}B activation or JAK-STAT signalling downstream of type I IFN stimulation. We find that ORF3c acts after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterised mechanism of innate immune evasion by this important human pathogen.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-448497

RESUMO

Despite being the target of extensive research efforts due to the COVID-19 pandemic, relatively little is known about the dynamics of SARS-CoV-2 replication within cells. We investigate and characterise the tightly orchestrated sequence of events during different stages of the infection cycle by visualising the spatiotemporal dynamics of the four structural proteins of SARS-CoV-2 at high resolution. The nucleoprotein is expressed first and accumulates around folded ER membranes in convoluted layers that connect to viral RNA replication foci. We find that of the three transmembrane proteins, the membrane protein appears at the Golgi apparatus/ERGIC before the spike and envelope proteins. Relocation of the lysosome marker LAMP1 towards the assembly compartment and its detection in transport vesicles of viral proteins confirm an important role of lysosomes in SARS-CoV-2 egress. These data provide new insights into the spatiotemporal regulation of SARS-CoV-2 assembly, and refine current understanding of SARS-CoV-2 replication.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257729

RESUMO

BackgroundThe rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. MethodsUsing pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. FindingsOur data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold. InterpretationExpressing our data in IU/ml, we provide a benchmark pre-vaccine standardised dataset that compares disease severity with neutralising antibody titres. Our data may now be compared across multiple laboratories. The continued use and aggregation of standardised data will eventually assist in defining correlates of protection. FundingUKRI and NIHR; grant number G107217 Research in contextO_ST_ABSEvidence before this studyC_ST_ABSDuring the first wave outbreak, much focus was placed on the role of neutralising antibodies and titres generated upon infection to ancestral SARS-CoV-2. Due to the large amounts of different assays used to elucidate the antibody-mediated immunity and laboratory to laboratory, large amounts of invaluable data could not be directly compared in order to define a correlate of protection, due to variability in the results. The WHO International Standard for anti-SARS-CoV-2 Immunoglobulin sera was made in order to standardise future data so that comparisons may take place. Added value of this studyOur study compares the neutralisation capacity of sera from patients and healthcare workers (HCWs) from the ancestral strain of SARS-CoV-2 against new variants, including the current variants of concern in circulation. We also provide data in International Units per mL, a standardised unitage, for infected individuals that have a clinical severity score, allowing us to assess levels of neutralising antibodies across different severities of COVID-19 disease. By providing a method to calibrate most of the variants of concern so that the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin reagent could be used to standardise our results, therefore making them comparable to other laboratories who also standardised their data in an identical manner. Implications of all the available evidenceContinual use and accumulation of standardised data would eventually lead to defining the correlates of protection against SARS-CoV-2. This could help to inform medical staff to identify which individuals would be a greater risk of a potential reinfection to SARS-CoV-2.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-426695

RESUMO

The majority of SARS-CoV-2 vaccines in use or in advanced clinical development are based on the viral spike protein (S) as their immunogen. S is present on virions as pre-fusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described that act against both open and closed conformations. The long-term success of vaccination strategies will depend upon inducing antibodies that provide long-lasting broad immunity against evolving, circulating SARS-CoV-2 strains, while avoiding the risk of antibody dependent enhancement as observed with other Coronavirus vaccines. Here we have assessed the results of immunization in a mouse model using an S protein trimer that is arrested in the closed state to prevent exposure of the receptor binding site and therefore interaction with the receptor. We compared this with a range of other modified S protein constructs, including representatives used in current vaccines. We found that all trimeric S proteins induce a long-lived, strongly neutralizing antibody response as well as T-cell responses. Notably, the protein binding properties of sera induced by the closed spike differed from those induced by standard S protein constructs. Closed S proteins induced more potent neutralising responses than expected based on the degree to which they inhibit interactions between the RBD and ACE2. These observations suggest that closed spikes recruit different, but equally potent, virus-inhibiting immune responses than open spikes, and that this is likely to include neutralizing antibodies against conformational epitopes present in the closed conformation. Together with their improved stability and storage properties we suggest that closed spikes may be a valuable component of refined, next-generation vaccines.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-425396

RESUMO

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 downregulates tetherin to aid its release from cells, and investigate potential proteins involved in this process. Loss of tetherin from cells caused an increase in SARS-CoV-2 viral titre. We find SARS-CoV-2 spike protein to be responsible for tetherin downregulation, rather than ORF7a as previously described for the 2002-2003 SARS-CoV. We instead find ORF7a to be responsible for Golgi fragmentation, and expression of ORF7a in cells recapitulates Golgi fragmentation observed in SARS-CoV-2 infected cells. HighlightsO_LISARS-CoV-2 downregulates the host restriction factor, tetherin. C_LIO_LITetherin loss enhances viral titre and spread. C_LIO_LISARS-CoV-2 ORF7a protein does not downregulate tetherin, but instead induces Golgi fragmentation. C_LIO_LITetherin downregulation is mediated by SARS-CoV-2 spike. C_LI

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...