Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 35(44): 5705-5712, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27041586

RESUMO

The outermost layer of the mammalian skin, the epidermis, forms a protective barrier against pathogenic microbes and tissue dehydration. This barrier is formed and maintained by complex genetic networks that connect cellular differentiation processes, enzymatic activities and cellular junctions. Disruption in these networks affects the balance between keratinocyte proliferation and differentiation resulting in barrier function impairment, epidermal hyperproliferation and in some cases, squamous cell carcinoma (SCC). Recent studies in wound-induced inflammation-mediated cancers in mice have identified dysregulation of core barrier components as tumor drivers. We therefore propose a hypothesis in which loss of key barrier genes, induce barrier dysfunction, and promote inflammation-driven epidermal hyperplasia and carcinogenesis over time. This emerging vision suggests that under specific genetic circumstances, localized barrier impairment could be considered as a hallmark of initiating lesions in epidermal SCC.


Assuntos
Transformação Celular Neoplásica/genética , Epiderme/metabolismo , Epiderme/patologia , Predisposição Genética para Doença , Neoplasias Cutâneas/etiologia , Animais , Diferenciação Celular/genética , Transformação Celular Neoplásica/metabolismo , Microambiente Celular/genética , Microambiente Celular/imunologia , Humanos , Inflamação/complicações , Inflamação/etiologia , Queratinócitos/citologia , Queratinócitos/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
2.
Bone ; 50(3): 704-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22173052

RESUMO

Proteinase-activated receptor-2 (PAR(2)) is a G-protein coupled receptor expressed by osteoblasts and monocytes. PAR(2) is activated by a number of proteinases including coagulation factors and proteinases released by inflammatory cells. The aim of the current study was to investigate the role of PAR(2) in skeletal growth and repair using wild type (WT) and PAR(2) knockout (KO) mice. Micro computed tomography and histomorphometry were used to examine the structure of tibias isolated from uninjured mice at 50 and 90 days of age, and from 98-day-old mice in a bone repair model in which a hole had been drilled through the tibias. Bone marrow was cultured and investigated for the presence of osteoblast precursors (alkaline phosphatase-positive fibroblastic colonies), and osteoclasts were counted in cultures treated with M-CSF and RANKL. Polymerase chain reaction (PCR) was used to determine which proteinases that activate PAR(2) are expressed in bone marrow. Regulation of PAR(2) expression in primary calvarial osteoblasts from WT mice was investigated by quantitative PCR. Cortical and trabecular bone volumes were significantly greater in the tibias of PAR(2) KO mice than in those of WT mice at 50 days of age. In trabecular bone, osteoclast surface, osteoblast surface and osteoid volume were significantly lower in KO than in WT mice. Bone marrow cultures from KO mice showed significantly fewer alkaline phosphatase-positive colony-forming units and osteoclasts compared to cultures from WT mice. Significantly less new bone and significantly fewer osteoclasts were observed in the drill sites of PAR(2) KO mice compared to WT mice 7 days post-surgery. A number of activators of PAR(2), including matriptase and kallikrein 4, were found to be expressed by normal bone marrow. Parathyroid hormone, 1,25 dihydroxyvitamin D(3), or interleukin-6 in combination with its soluble receptor down-regulated PAR(2) mRNA expression, and fibroblast growth factor-2 or thrombin stimulated PAR(2) expression. These results suggest that PAR(2) activation contributes to determination of cells of both osteoblast and osteoclast lineages within bone marrow, and thereby participates in the regulation of skeletal growth and bone repair.


Assuntos
Desenvolvimento Ósseo/fisiologia , Diferenciação Celular/fisiologia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Receptor PAR-2/metabolismo , Tíbia/crescimento & desenvolvimento , Animais , Calcitriol/metabolismo , Células Cultivadas , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoclastos/citologia , Hormônio Paratireóideo/metabolismo , Radiografia , Receptor PAR-2/genética , Tíbia/diagnóstico por imagem , Tíbia/metabolismo
3.
Int J Biochem Cell Biol ; 40(6-7): 1169-84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18243039

RESUMO

Protease-activated receptors (PARs) mediate cellular responses to a subset of extracellular proteases, including blood coagulation factors and proteases produced by inflammatory cells. Cells in bone, cartilage and muscle exhibit cell type-specific expression patterns and functional responses for the different PARs. Activators of PAR-1 include thrombin, and activators of PAR-2 include trypsin and tryptase; PARs-3 and -4 are also receptors for thrombin. Thrombin stimulates PAR-1-mediated proliferative responses in osteoblasts, chondrocytes and myoblasts, and in developing muscle, PAR-1 activation by thrombin appears to mediate activity-dependent polyneuronal synapse reduction. In bone, activation of PAR-2 leads to inhibition of osteoblast-mediated osteoclast differentiation induced by hormones or cytokines, and in muscle, PAR-2 activation leads to stimulation of myoblast proliferation. Although there is some evidence for a role for PARs expressed by cells of the musculoskeletal system at specific stages of development, their major role appears to be in protecting the tissues from the destructive effects of inflammation and promoting regeneration. This review discusses the regulation of cell function in the musculoskeletal system by receptor-mediated responses to proteases. Expression patterns of PARs, the circumstances in which PAR activators are likely to be present, functional responses of PAR activation, and responses to thrombin for which receptors have not yet been identified are considered.


Assuntos
Sistema Musculoesquelético/metabolismo , Receptores Ativados por Proteinase/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/enzimologia , Osso e Ossos/metabolismo , Cartilagem/citologia , Cartilagem/enzimologia , Cartilagem/metabolismo , Humanos , Modelos Biológicos , Músculos/citologia , Músculos/enzimologia , Músculos/metabolismo , Sistema Musculoesquelético/citologia , Serina Endopeptidases/metabolismo , Trombina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...