Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 104: 104318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37989427

RESUMO

Microplastic particles have been detected in the human body. This study aimed to develop a blood digestion method that preserves microplastics during analysis. Acidic and alkaline reagents, commonly used for isolating plastic particles from organic materials, were tested on human blood samples and microplastics. Nitric acid, hydrochloric acid, potassium hydroxide, and sodium hydroxide were examined over time. Additionally, a pepsin-pancreatin combination was utilized for blood digestion. Light microscopy assessed digestion efficiency and particle count changes, while Raman microspectroscopy distinguished between plastic and cell debris. The acidic reagents were ineffective in removing the organic material, while alkaline reagents were effective without significant effects on microplastics. Blood digestion using pepsin and pancreatin demonstrated efficient digestion without negative consequences for the particles. While potassium hydroxide digestion is already established, novel use of the pepsin-pancreatin combination was introduced to digest human blood, indicating its potential for isolating plastic particles from tissue and human food.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos/análise , Pancreatina/análise , Pepsina A , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
2.
Toxics ; 11(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37755800

RESUMO

Microplastic particles are ubiquitous in our environment, having entered the air, the water, the soil, and ultimately our food chain. Owing to their small size, these particles can potentially enter the bloodstream and accumulate in the organs. To detect microplastics using existing methods, they must first be isolated. The aim of this study was to develop a non-destructive method for efficiently and affordably isolating plastic particles. We investigated the digestion of kidney, lung, liver, and brain samples from pigs. Kidney samples were analyzed using light microscopy after incubation with proteinase K, pepsin/pancreatin, and 10% potassium hydroxide (KOH) solution. Various KOH:tissue ratios were employed for the digestion of lung, liver, and brain samples. Additionally, we examined the effect of 10% KOH solution on added polystyrene microplastics using scanning electron microscopy. Our findings revealed that a 10% KOH solution is the most suitable for dissolving diverse organ samples, while enzymatic methods require further refinement. Moreover, we demonstrated that commonly used 1 µm polystyrene particles remain unaffected by 10% KOH solution even after 76 h of incubation. Digestion by KOH offers a simple and cost-effective approach for processing organ samples and holds potential for isolating plastic particles from meat products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA