Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504084

RESUMO

Predominantly non-furanic commercial humins were used to prepare humin-based non-isocyanate polyurethane (NIPU) resins for wood panel adhesives. Pure humin-based NIPU resins and tannin-humin NIPU resins were prepared, the latter to upgrade the humins' performance. Species in the raw humins and species formed in the NIPU resins were identified by Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI ToF) spectrometry and Fourier Transform Infrared (FTIR). Humins, fulvic acid and derivatives, humic acid and its fragments, some lignans present and furanic oligomers present formed NIPU linkages. Thermomechanical analysis (TMA) showed that as with other biomaterials-based NIPU resins, all these resins also showed two temperature peaks of curing, the first around 130 °C and the second around 220 °C. A decrease in the Modulus of Elasticity (MOE) between the two indicated that the first curing period corresponded to linear growth of the oligomers forming a physical entanglement network. This then disentangled, and the second corresponded to the formation of a chemical cross-linked network. This second peak was more evident for the tannin-humin NIPU resins. All the laboratory particleboard made and tested either bonded with pure humins or with tannin-humin NIPU adhesives satisfied well the internal bond strength requirements of the relevant standard for interior grade panels. The tannin-humin adhesives performed clearly better than the pure humins one.

2.
Polymers (Basel) ; 12(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213107

RESUMO

Ambient temperature self-blowing tannin-furanic foams have been prepared by substituting a great part-even a majority-of furfuryl alcohol with humins, a polyfuranic material derived from the acid treatment at high temperature of fructose. Closed-cell foams were prepared at room temperature and curing, while interconnected-cell foams were prepared at 80 °C and curing, this being due to the more vigorous evaporation of the solvent. These foams appear to present similar characteristics as other tannin-furanic foams based only on furfuryl alcohol. A series of tannin-humins-furfuryl alcohol oligomer structures have been defined indicating that all three reagents co-react. Humins appeared to react well with condensed tannins, even higher molecular weight humins species, and even at ambient temperature, but they react slower than furfuryl alcohol. This is due to their high average molecular weight and high viscosity, causing their reaction with other species to be diffusion controlled. Thus, small increases in solvent led to foams with less cracks and open structures. It showed that furfuryl alcohol appears to also have a role as a humins solvent, and not just as a co-reagent and self-polymerization heat generator for foam expansion and hardening. Stress-strain for the different foams showed a higher compressive strength for both the foam with the lowest and the highest proportion of humins, thus in the dominant proportions of either furfuryl alcohol or the humins. Thus, due to their slower reactivity as their proportion increases to a certain critical level, more of them do proportionally participate within the expansion/curing time of the foam to the reaction.

3.
Polymers (Basel) ; 12(4)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235495

RESUMO

Ambient temperature self-blowing mimosa tannin-based non-isocyanate polyurethane (NIPU) rigid foam was produced, based on a formulation of tannin-based non-isocyanate polyurethane (NIPU) resin. A citric acid and glutaraldehyde mixture served as a blowing agent used to provide foaming energy and cross-link the tannin-derived products to synthesize the NIPU foams. Series of tannin-based NIPU foams containing a different amount of citric acid and glutaraldehyde were prepared. The reaction mechanism of tannin-based NIPU foams were investigated by Fourier Trasform InfraRed (FT-IR), Matrix Assisted Laser Desorption Ionization (MALDI-TOF) mass spectrometry, and 13C Nuclear Magnetic Resonance (13C NMR). The results indicated that urethane linkages were formed. The Tannin-based NIPU foams morphology including physical and mechanical properties were characterized by mechanical compression, by scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). All the foams prepared showed a similar open-cell morphology. Nevertheless, the number of cell-wall pores decreased with increasing additions of glutaraldehyde, while bigger foam cells were obtained with increasing additions of citric acid. The compressive mechanical properties improved with the higher level of crosslinking at the higher amount of glutaraldehyde. Moreover, the TGA results showed that the tannin-based NIPU foams prepared had similar thermal stability, although one of them (T-Fs-7) presented the highest char production and residual matter, approaching 18.7% at 790 °C.

4.
Polymers (Basel) ; 11(11)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684084

RESUMO

A partially biobased self-blowing and self-hardening polyurethane foam from glucose-based non-isocyanate polyurethanes (g-NIPU) was prepared by reaction of glucose with dimethyl carbonate and hexamethylene diamine. However, these foam types generally require a high foaming temperature. In this paper, a self-blowing foam based on g-NIPU was prepared at room temperature by using maleic acid as an initiator and glutaraldehyde as a crosslinker. Water absorption, compression resistance, and fire resistance were tested. Scanning electron microscopy (SEM) was used to observe the foam cells structure. Middle infrared (ATR FT-MIR) and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry were used to help to analyze the reactions during the foaming process. The results obtained showed that self- blowing rigid foams have good compression, this being directly proportional to the foam density. Increasing the amount of glutaraldehyde or reducing maleic acid thickens the cell walls and increases the density of the foams. MALDI-TOF analysis showed that g-NIPU reacts with both maleic acid and glutaraldehyde. The foams presented poor fire resistance indicating that, as for isocyanate based polyurethane foams, addition of a fire retardant would be necessary.

5.
Beilstein J Org Chem ; 6: 973-7, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21085509

RESUMO

Despite the continuous interest in organogels and hydrogels of low molecular weight gelators (LMWG), establishing the relationship between the molecular structure and the gelation mechanism is still a challenge. In this paper our interest focuses on the consequences of slight molecular modifications on the self-assembling behaviour of ß-Ala vs Gly-Gly-based hydrogelators. Previously, in our group, amino acid based amphiphiles i.e. Gly-Gly-His-EO2-Alk, a trimodular amphiphile (containing three domains: H-bond donor and acceptor/hydrophilic/hydrophobic domain, respectively) were reported to act as hydrogelators and that the gelation properties were related to hydrogen bonding, hydrophobic interactions and π-π stacking. Herein, ß-Ala-His-EO2-Alk was fully characterised by FT-IR, NMR, SAXS and SEM and the gelation mechanism is discussed. It appears that the number of amide groups determines the self-assembling behaviour into 1D or 2D/3D networks as a result of intimate interactions between gelator molecules.

6.
J Agric Food Chem ; 55(23): 9496-502, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17937478

RESUMO

The conversion yield at equilibrium, the initial rate, and the regioselectivity of the enzymatic acetylation of aglycone flavonoids (quercetin, naringenin, hesperetin, and chrysin) were investigated and compared to those obtained with a glycosylated one (isoquercitrin). The effects of a wide range of operating conditions were quantified. Fourier transform infrared spectrometry (FT-IR), NMR, and high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses showed that for glycosylated flavonoids, in the presence of Candida antarctica (CAL-B), the acetylation occurred on the 2''-OH, 3''-OH, and 6''-OH of the glucose part, while with Pseudomonas cepacea lipase (PSL-C) acetylation takes place on 6''-OH of the sugar and 4'-OH of the B-ring. For aglycone flavonoids, the acetylation occurred only with PSL-C on 4'-OH, 3'-OH, and 7-OH hydroxyls. The conversion yield and the number and the relative proportions of the synthesized products were found dependent on the nature of the enzyme, the molar ratio, and the flavonoid structure. The initial rate was affected only by the origin of the enzyme.


Assuntos
Flavonoides/metabolismo , Lipase/metabolismo , Acilação , Burkholderia cepacia/enzimologia , Flavonoides/química , Proteínas Fúngicas , Glicosilação , Solventes , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...