Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(18)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759542

RESUMO

Brain plasticity is induced by learning during wakefulness and is consolidated during sleep. But the molecular mechanisms involved are poorly understood and their relation to experience-dependent changes in brain activity remains to be clarified. Localised mRNA translation is important for the structural changes at synapses supporting brain plasticity consolidation. The translation mTOR pathway, via phosphorylation of 4E-BPs, is known to be activate during sleep and contributes to brain plasticity, but whether this activation is specific to synapses is not known. We investigated this question using acute exposure of rats to an enriched environment (EE). We measured brain activity with EEGs and 4E-BP phosphorylation at cortical and cerebellar synapses with Western blot analyses. Sleep significantly increased the conversion of 4E-BPs to their hyperphosphorylated forms at synapses, especially after EE exposure. EE exposure increased oscillations in the alpha band during active exploration and in the theta-to-beta (4-30 Hz) range, as well as spindle density, during NREM sleep. Theta activity during exploration and NREM spindle frequency predicted changes in 4E-BP hyperphosphorylation at synapses. Hence, our results suggest a functional link between EEG and molecular markers of plasticity across wakefulness and sleep.


Assuntos
Gastrópodes , Vigília , Animais , Ratos , Encéfalo , Sono , Fatores de Iniciação de Peptídeos , Sinapses
2.
Front Aging Neurosci ; 15: 1119873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122377

RESUMO

Aging is associated with substantial physiological changes and constitutes a major risk factor for neurological disorders including dementia. Alterations in gene expression upon aging have been extensively studied; however, an in-depth characterization of post-transcriptional regulatory events remains elusive. Here, we profiled the age-related changes of the transcriptome and translatome in the female mouse hippocampus by RNA sequencing of total RNA and polysome preparations at four ages (3-, 6-, 12-, 20-month-old); and we implemented a variety of bioinformatics approaches to unravel alterations in transcript abundance, alternative splicing, and polyadenylation site selection. We observed mostly well-coordinated transcriptome and translatome expression signatures across age including upregulation of transcripts related to immune system processes and neuroinflammation, though transcripts encoding ribonucleoproteins or associated with mitochondrial functions, calcium signaling and the cell-cycle displayed substantial discordant profiles, suggesting translational control associated with age-related deficits in hippocampal-dependent behavior. By contrast, alternative splicing was less preserved, increased with age and was associated with distinct functionally-related transcripts encoding proteins acting at synapses/dendrites, RNA-binding proteins; thereby predicting regulatory roles for RBM3 and CIRBP. Only minor changes in polyadenylation site selection were identified, indicating pivotal 3'-end selection in young adults compared to older groups. Overall, our study provides a comprehensive resource of age-associated post-transcriptional regulatory events in the mouse hippocampus, enabling further examination of the molecular features underlying age-associated neurological diseases.

4.
5.
Sci Transl Med ; 14(672): eabo5715, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417487

RESUMO

Cardiac pathologies are characterized by intense remodeling of the extracellular matrix (ECM) that eventually leads to heart failure. Cardiomyocytes respond to the ensuing biomechanical stress by reexpressing fetal contractile proteins via transcriptional and posttranscriptional processes, such as alternative splicing (AS). Here, we demonstrate that the heterogeneous nuclear ribonucleoprotein C (hnRNPC) is up-regulated and relocates to the sarcomeric Z-disc upon ECM pathological remodeling. We show that this is an active site of localized translation, where the ribonucleoprotein associates with the translation machinery. Alterations in hnRNPC expression, phosphorylation, and localization can be mechanically determined and affect the AS of mRNAs involved in mechanotransduction and cardiovascular diseases, including Hippo pathway effector Yes-associated protein 1. We propose that cardiac ECM remodeling serves as a switch in RNA metabolism by affecting an associated regulatory protein of the spliceosome apparatus. These findings offer new insights on the mechanism of mRNA homeostatic mechanoregulation in pathological conditions.


Assuntos
Insuficiência Cardíaca , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Mecanotransdução Celular , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Matriz Extracelular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Front Mol Biosci ; 9: 1008921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275625

RESUMO

The regulation of mRNA translation plays an essential role in neurons, contributing to important brain functions, such as brain plasticity and memory formation. Translation is conducted by ribosomes, which at their core consist of ribosomal proteins (RPs) and ribosomal RNAs. While translation can be regulated at diverse levels through global or mRNA-specific means, recent evidence suggests that ribosomes with distinct configurations are involved in the translation of different subsets of mRNAs. However, whether and how such proclaimed ribosome heterogeneity could be connected to neuronal functions remains largely unresolved. Here, we postulate that the existence of heterologous ribosomes within neurons, especially at discrete synapses, subserve brain plasticity. This hypothesis is supported by recent studies in rodents showing that heterogeneous RP expression occurs in dendrites, the compartment of neurons where synapses are made. We further propose that sleep, which is fundamental for brain plasticity and memory formation, has a particular role in the formation of heterologous ribosomes, specialised in the translation of mRNAs specific for synaptic plasticity. This aspect of our hypothesis is supported by recent studies showing increased translation and changes in RP expression during sleep after learning. Thus, certain RPs are regulated by sleep, and could support different sleep functions, in particular brain plasticity. Future experiments investigating cell-specific heterogeneity in RPs across the sleep-wake cycle and in response to different behaviour would help address this question.

7.
Nucleic Acids Res ; 50(12): 7048-7066, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736218

RESUMO

DICER1 syndrome is a cancer pre-disposition disorder caused by mutations that disrupt the function of DICER1 in miRNA processing. Studying the molecular, cellular and oncogenic effects of these mutations can reveal novel mechanisms that control cell homeostasis and tumor biology. Here, we conduct the first analysis of pathogenic DICER1 syndrome allele from the DICER1 3'UTR. We find that the DICER1 syndrome allele, rs1252940486, abolishes interaction with the PUMILIO RNA binding protein with the DICER1 3'UTR, resulting in the degradation of the DICER1 mRNA by AUF1. This single mutational event leads to diminished DICER1 mRNA and protein levels, and widespread reprogramming of miRNA networks. The in-depth characterization of the rs1252940486 DICER1 allele, reveals important post-transcriptional regulatory events that control DICER1 levels.


Assuntos
MicroRNAs , RNA Mensageiro , MicroRNAs/genética
8.
Microorganisms ; 10(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208795

RESUMO

Post-transcriptional gene regulation is driven by RNA-binding proteins (RBPs). Recent global approaches suggest widespread autoregulation of RBPs through binding to their own mRNA; however, little is known about the regulatory impact and quantitative models remain elusive. By integration of several independent kinetic parameters and abundance data, we modelled autoregulatory feedback loops for six canonical and non-canonical RBPs from the yeast Saccharomyces cerevisiae, namely Hrb1p, Hek2/Khd1p, Ski2p, Npl3p, Pfk2p, and Map1p. By numerically solving ordinary differential equations, we compared non-feedback models with models that considered the RPBs as post-transcriptional activators/repressors of their own expression. While our results highlight a substantial gap between predicted protein output and experimentally determined protein abundances applying a no-feedback model, addition of positive feedback loops are surprisingly versatile and can improve predictions towards experimentally determined protein levels, whereas negative feedbacks are particularly sensitive to cooperativity. Our data suggests that introduction of feedback loops supported by real data can improve models of post-transcriptional gene expression.

9.
Noncoding RNA ; 8(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35076559

RESUMO

We are delighted to share with you our seventh Journal Club and highlight some of the most interesting papers published recently [...].

10.
STAR Protoc ; 2(4): 100929, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34766032

RESUMO

In vivo characterization of RNA-protein interactions is the key for understanding RNA regulatory mechanisms. Herein, we describe a protocol for detection of proteins interacting with polyadenylated RNAs in the yeast Saccharomyces cerevisiae. Proteins are crosslinked to nucleic acids in vivo by ultraviolet (UV) irradiation of cells, and poly(A)-containing RNAs with bound proteins are isolated from cell lysates using oligo[dT]25 beads. RBPs can be detected by immunoblot analysis or with mass spectrometry to define the mRNA-binding proteome (mRBPome) and its changes under stress. For complete details on the use and execution of this protocol, please refer to Matia-González et al. (2021, 2015).


Assuntos
Espectrometria de Massas/métodos , RNA Fúngico , RNA Mensageiro , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae , Mapeamento de Interação de Proteínas , Proteoma , Proteômica , RNA Fúngico/análise , RNA Fúngico/química , RNA Fúngico/isolamento & purificação , RNA Fúngico/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/química , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
iScience ; 24(7): 102753, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34278261

RESUMO

RNA-binding proteins (RBPs) are key post-transcriptional regulators that play a substantial role during stress adaptation. Recent proteome-wide surveys have uncovered a large number of new and "unconventional" RBPs such as metabolic enzymes, yet little is known about the reconfiguration of the RNA-binding proteome (RBPome) and RNA-enzyme interactions in response to cellular stress. Here, we applied RNA-interactome capture to monitor the dynamics of the mRBPome upon mild oxidative stress in the yeast Saccharomyces cerevisiae. Among the 257 proteins that significantly changed RNA associations, we observed the coordinated remodeling of RNA-binding enzymes - particularly of the central carbon metabolism - that complemented known metabolic responses. Furthermore, we recognized the propensity for paralogous specific alterations of enzyme-RNA interactions. Our results suggest coordinated cross talk between RNA-enzyme interactions and intermediary metabolism to maintain the physiological and molecular balance upon oxidative stress, perhaps through specialization of paralogous during evolution.

12.
Emerg Top Life Sci ; 5(5): 681-685, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34328175

RESUMO

As our understanding of the complex network of regulatory pathways for gene expression continues to grow, avenues of investigation for how these new findings can be utilised in therapeutics are emerging. The recent growth of interest in the RNA binding protein (RBP) interactome has revealed it to be rich in targets linked to, and causative of diseases. While this is, in and of itself, very interesting, evidence is also beginning to arise for how the RBP interactome can act to modulate the response of diseases to existing therapeutic treatments, especially in cancers. Here we highlight this topic, providing examples of work that exemplifies such modulation of chemotherapeutic sensitivity.


Assuntos
Neoplasias , Proteínas de Ligação a RNA , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Microorganisms ; 9(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063193

RESUMO

RNA-binding proteins (RBPs) participate in several steps of post-transcriptional regulation of gene expression, such as splicing, messenger RNA transport, mRNA localization, and translation. Gene-expression regulation in trypanosomatids occurs primarily at the post-transcriptional level, and RBPs play important roles in the process. Here, we characterized the RBP TcSgn1, which contains one RNA recognition motif (RRM). TcSgn1 is a close ortholog of yeast Saccharomyces cerevisiae protein ScSgn1, which plays a role in translational regulation in the cytoplasm. We found that TcSgn1 in Trypanosoma cruzi is localized in the nucleus in exponentially growing epimastigotes. By performing immunoprecipitation assays of TcSgn1, we identified hundreds of mRNAs associated with the protein, a significant fraction of them coding for nucleic acids binding, transcription, and endocytosis proteins. In addition, we show that TcSgn1 is capable of interacting directly with the poly(A) tail of the mRNAs. The study of parasites under nutritional stress showed that TcSgn1 was localized in cytoplasmic granules in addition to localizing in the nucleus. Similar to ScSgn1, we observed that TcSgn1 also interacts with the PABP1 protein, suggesting that this protein may play a role in regulating gene expression in T. cruzi. Taken together, our results show that RNA-binding protein TcSgn1 is part of ribonucleoprotein complexes associated with nuclear functions, stress response, and RNA metabolism.

14.
Noncoding RNA ; 7(1)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671874

RESUMO

RNA-protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA-protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA-protein complexes upon different environmental cues and in disease.

15.
RNA Biol ; 17(1): 33-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31522610

RESUMO

Post-transcriptional control of gene expression is mediated via RNA-binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. While recent global RNA interactome capture experiments expanded the repertoire of cellular RBPs quiet dramatically, little is known about the assembly of RBPs on particular mRNAs; and how these associations change and control the fate of the mRNA in drug-treatment conditions. Here we introduce a novel biochemical approach, termed tobramycin-based tandem RNA isolation procedure (tobTRIP), to quantify proteins associated with the 3'UTRs of cyclin-dependent kinase inhibitor 1B (CDKN1B/p27Kip1) mRNAs in vivo. P27Kip1 plays an important role in mediating a cell's response to cisplatin (CP), a widely used chemotherapeutic cancer drug that induces DNA damage and cell cycle arrest. We found that p27Kip1 mRNA is stabilized upon CP treatment of HEK293 cells through elements in its 3'UTR. Applying tobTRIP, we further compared the associated proteins in CP and non-treated cells, and identified more than 50 interacting RBPs, many functionally related and evoking a coordinated response. Knock-downs of several of the identified RBPs in HEK293 cells confirmed their involvement in CP-induced p27 mRNA regulation; while knock-down of the KH-type splicing regulatory protein (KHSRP) further enhanced the sensitivity of MCF7 adenocarcinoma cancer cells to CP treatment. Our results highlight the benefit of specific in vivo mRNA-protein interactome capture to reveal post-transcriptional regulatory networks implicated in cellular drug response and adaptation.


Assuntos
Regiões 3' não Traduzidas , Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Sequências de Repetição em Tandem , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Processamento Pós-Transcricional do RNA , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética
16.
Cell Death Differ ; 26(10): 2157-2178, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30728462

RESUMO

Post-transcriptional control of mRNAs by RNA-binding proteins (RBPs) has a prominent role in the regulation of gene expression. RBPs interact with mRNAs to control their biogenesis, splicing, transport, localization, translation, and stability. Defects in such regulation can lead to a wide range of human diseases from neurological disorders to cancer. Many RBPs are conserved between Caenorhabditis elegans and humans, and several are known to regulate apoptosis in the adult C. elegans germ line. How these RBPs control apoptosis is, however, largely unknown. Here, we identify mina-1(C41G7.3) in a RNA interference-based screen as a novel regulator of apoptosis, which is exclusively expressed in the adult germ line. The absence of MINA-1 causes a dramatic increase in germ cell apoptosis, a reduction in brood size, and an impaired P granules organization and structure. In vivo crosslinking immunoprecipitation experiments revealed that MINA-1 binds a set of mRNAs coding for RBPs associated with germ cell development. Additionally, a system-wide analysis of a mina-1 deletion mutant compared with wild type, including quantitative proteome and transcriptome data, hints to a post-transcriptional regulatory RBP network driven by MINA-1 during germ cell development in C. elegans. In particular, we found that the germline-specific Argonaute WAGO-4 protein levels are increased in mina-1 mutant background. Phenotypic analysis of double mutant mina-1;wago-4 revealed that contemporary loss of MINA-1 and WAGO-4 strongly rescues the phenotypes observed in mina-1 mutant background. To strengthen this functional interaction, we found that upregulation of WAGO-4 in mina-1 mutant animals causes hypersensitivity to exogenous RNAi. Our comprehensive experimental approach allowed us to describe a phenocritical interaction between two RBPs controlling germ cell apoptosis and exogenous RNAi. These findings broaden our understanding of how RBPs can orchestrate different cellular events such as differentiation and death in C. elegans.


Assuntos
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Interferência de RNA , Animais , Células Germinativas
17.
J Vis Exp ; (138)2018 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-30176020

RESUMO

RNA-binding proteins (RBPs) play key roles in the post-transcriptional control of gene expression. Therefore, biochemical characterization of mRNA-protein complexes is essential to understanding mRNA regulation inferred by interacting proteins or non-coding RNAs. Herein, we describe a tandem RNA isolation procedure (TRIP) that enables the purification of endogenously formed mRNA-protein complexes from cellular extracts. The two-step protocol involves the isolation of polyadenylated mRNAs with antisense oligo(dT) beads and subsequent capture of an mRNA of interest with 3'-biotinylated 2'-O-methylated antisense RNA oligonucleotides, which can then be isolated with streptavidin beads. TRIP was used to recover in vivo crosslinked mRNA-ribonucleoprotein (mRNP) complexes from yeast, nematodes and human cells for further RNA and protein analysis. Thus, TRIP is a versatile approach that can be adapted to all types of polyadenylated RNAs across organisms to study the dynamic re-arrangement of mRNPs imposed by intracellular or environmental cues.


Assuntos
Células Eucarióticas/metabolismo , RNA Mensageiro/genética , RNA/metabolismo , Humanos
19.
FEBS Lett ; 592(17): 2917-2931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29908064

RESUMO

The RNA-binding proteins play essential roles in the post-transcriptional regulation of gene expression. While hundreds of RNA-binding proteins can be predicted computationally, the recent introduction of proteome-wide approaches has dramatically expanded the repertoire of proteins interacting with RNA. Besides canonical RNA-binding proteins that contain characteristic RNA-binding domains, many proteins that lack such domains but have other well-characterized cellular functions were identified; including metabolic enzymes, heat shock proteins, kinases, as well as transcription factors and chromatin-associated proteins. In the context of these recently published RNA-protein interactome datasets obtained from yeast, nematodes, flies, plants and mammalian cells, we discuss examples for seemingly evolutionary conserved 'unconventional' RNA-binding proteins that act in central carbon metabolism, stress response or regulation of transcription.


Assuntos
Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação , Carbono/metabolismo , Bases de Dados de Proteínas , Regulação da Expressão Gênica , Humanos , Processamento Pós-Transcricional do RNA , Estresse Fisiológico
20.
Sci Rep ; 7(1): 6542, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747643

RESUMO

Whilst the profiling of the transcriptome and proteome even of single-cells becomes feasible, the analysis of the translatome, which refers to all messenger RNAs (mRNAs) engaged with ribosomes for protein synthesis, is still an elaborate procedure requiring millions of cells. Herein, we report the generation and use of "smart materials", namely molecularly imprinted polymers (MIPs) to facilitate the isolation of ribosomes and translated mRNAs from merely 1,000 cells. In particular, we show that a hydrogel-based ribosome imprinted polymer could recover ribosomes and associated mRNAs from human, simian and mice cellular extracts, but did not selectively enrich yeast ribosomes, thereby demonstrating selectivity. Furthermore, ribosome imprinted polymers enabled the sensitive measurement of an mRNA translational regulatory event, requiring 1,000-fold less cells than current methodologies. These results provide first evidence for the suitability of MIPs to selectively recover ribonucleoprotein complexes such as ribosomes, founding a novel means for sensitive detection of gene regulation.


Assuntos
Fracionamento Celular/métodos , Biologia Molecular/métodos , Biossíntese de Proteínas , RNA Mensageiro/isolamento & purificação , Ribossomos , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...