Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36839916

RESUMO

Compressed mini-tablets in sachets or capsules are an increasingly prevalent oral solid dosage form for pediatric products. While resembling adult tablets, additional care is required to control weight and potency (blend uniformity) variation due to their small size (≤2.5 mm average diameter). Additionally, sachet fill count errors complicate dose accuracy as they are difficult to resolve with weight-checking equipment. This study quantified the probability of failing content uniformity (CU) specifications (which results in the inability to release a batch) defined in USP <905> using a Monte Carlo computational model. Failure risk was modeled as a function of sachet fill count, mini-tablet weight, potency distribution, and fill error frequency. The model allows product developers to (1) determine appropriate fill counts based on anticipated product weight and potency relative standard deviation (RSD), (2) set fill error probability tolerances for sachet filling processes, (3) identify CU improvement opportunities, and (4) quantify the probability of CU failure informing risk management activities and risk disclosure for regulatory agencies. A representative product with weight and potency RSD no greater than 5%, fill count of 1-4 mini-tablets per sachet, and fill error probability per mini-tablet filled of 0.1% may experience CU batch failure probabilities as high as 8.23%, but only 0.283% if the fill count is increased to 5-10 mini-tablets per sachet. Generally, fill counts of less than five mini-tablets per sachet should be avoided where possible.

2.
J Control Release ; 347: 314-329, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513208

RESUMO

Scleral photocrosslinking is increasingly investigated for treatment of myopia and glaucoma. In this study a computational model was developed to predict crosslinking efficiency of visible/near infrared photosensitizers in the sclera. Photocrosslinking was validated against riboflavin corneal crosslinking experimental studies and subsequently modeled for the sensitizer, methylene blue, administered by retrobulbar injection to the posterior sclera and irradiated with a transpupillary light beam. Optimal ranges were determined for treatment parameters including light intensity, methylene blue concentration, injection volume, and inspired oxygen concentration. Additionally, sensitivity of crosslinking to various parameters was quantified. The most sensitive parameters were oxygen concentration in the injection solution, scleral thickness, and injection reservoir thickness (i.e., injection volume).


Assuntos
Azul de Metileno , Esclera , Colágeno , Simulação por Computador , Reagentes de Ligações Cruzadas , Oxigênio
3.
Transl Vis Sci Technol ; 11(5): 7, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35536721

RESUMO

Purpose: Scleral stiffening may protect against glaucomatous retinal ganglion cell (RGC) loss or dysfunction associated with ocular hypertension. Here, we assess the potential neuroprotective effects of two treatments designed to stiffen either the entire posterior sclera or only the sclera adjacent to the peripapillary sclera in an experimental model of glaucoma. Methods: Rat sclerae were stiffened in vivo using either genipin (crosslinking the entire posterior sclera) or a regionally selective photosensitizer, methylene blue (stiffening only the juxtaperipapillary region surrounding the optic nerve). Ocular hypertension was induced using magnetic microbeads delivered to the anterior chamber. Morphological and functional outcomes, including optic nerve axon count and appearance, retinal thickness measured by optical coherence tomography, optomotor response, and electroretinography traces, were assessed. Results: Both local (juxtaperipapillary) and global (whole posterior) scleral stiffening treatments were successful at increasing scleral stiffness, but neither provided demonstrable neuroprotection in hypertensive eyes as assessed by RGC axon counts and appearance, optomotor response, or electroretinography. There was a weak indication that scleral crosslinking protected against retinal thinning as assessed by optical coherence tomography. Conclusions: Scleral stiffening was not demonstrated to be neuroprotective in ocular hypertensive rats. We hypothesize that the absence of benefit may in part be due to RGC loss associated with the scleral stiffening agents themselves (mild in the case of genipin, and moderate in the case of methylene blue), negating any potential benefit of scleral stiffening. Translational Relevance: The development of scleral stiffening as a neuroprotective treatment will require the identification of better tolerated stiffening protocols and further preclinical testing.


Assuntos
Glaucoma , Esclera , Animais , Pressão Intraocular , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Neuroproteção , Ratos
4.
Adv Sci (Weinh) ; 8(2): 2001908, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511001

RESUMO

Glaucoma is the leading cause of irreversible blindness. Current treatments use drugs or surgery to reduce intraocular pressure (IOP). In this study, a drug-free, nonsurgical method is developed that lowers IOP for 4 months without requiring daily patient adherence. The approach involves expanding the suprachoroidal space (SCS) of the eye with an in situ-forming hydrogel injected using a microneedle. This study tests the hypothesis that SCS expansion increases the drainage of aqueous humor from the eye via the unconventional pathway, which thereby lowers IOP. SCS injection of a commercial hyaluronic acid (HA) hydrogel reduces the IOP of normotensive rabbits for more than 1 month and an optimized HA hydrogel formulation enables IOP reduction for 4 months. Safety assessment by clinical ophthalmic examinations indicate the treatment is well tolerated. Histopathology shows minor hemorrhage and fibrosis at the site of injection. Further analysis by ultrasound biomicroscopy demonstrates a strong correlation of IOP reduction with SCS expansion. Outflow facility measurements show no difference in pressure-dependent outflow by the conventional pathway between treated and untreated eyes, supporting the hypothesis. In conclusion, SCS expansion with an in situ-forming hydrogel can enable extended IOP reduction for treating ocular hypertension and glaucoma without drugs or surgery.

5.
Exp Eye Res ; 202: 108354, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171192

RESUMO

Most animal models of glaucoma rely on induction of ocular hypertension (OHT), yet such models can suffer from high IOPs leading to undesirable retinal ischemia. Thus, animals with IOPs exceeding a threshold (e.g. > 60 mmHg) are often excluded from studies. However, due to the intermittent nature of IOP measurements, this approach may fail to detect ischemia. Conversely, it may also inappropriately eliminate animals with IOP spikes that do not induce ischemic damage. It is known that acute ischemia selectively impairs inner retinal function, which results in a reduced b-wave amplitude. Here, we explore the potential of using electroretinography (ERG) to detect ischemic damage in OHT eyes. 74 Brown Norway rats received a unilateral injection of magnetic microbeads to induce OHT, while contralateral eyes served as controls. IOP was measured every 2-3 days for 14 days after microbead injection. Retinal function was evaluated using dark-adapted bright flash ERG (2.1 log cd•s/m2) prior to, and at 7 and 14 days after, injection. We investigated two criteria for excluding animals: (IOP Criterion) a single IOP measurement > 60 mmHg; or (ERG Criterion) a b-wave amplitude below the 99.5% confidence interval for naïve eyes. 49 of 74 rats passed both criteria, 7 of 74 failed both, and 18 passed one criterion but not the other. We suggest that ERG testing can detect unwelcome ischemic damage in animal models of OHT. Since brief IOP spikes do not necessarily lead to ischemic retinal damage, and because extended periods of elevated IOP can be missed, such ERG-based criteria may provide more objective and robust exclusion criteria in future glaucoma studies.


Assuntos
Adaptação à Escuridão/fisiologia , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Isquemia/fisiopatologia , Células Ganglionares da Retina/patologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Glaucoma/complicações , Glaucoma/diagnóstico , Isquemia/diagnóstico , Isquemia/etiologia , Masculino , Ratos , Ratos Endogâmicos BN
6.
J R Soc Interface ; 16(159): 20190427, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31615330

RESUMO

Scleral stiffening has been proposed as a therapy for glaucoma and myopia. Previous in vivo studies have evaluated the efficacy of scleral stiffening after multiple treatments with a natural collagen crosslinker, genipin. However, multiple injections limit clinical translatability. Here, we examined whether scleral stiffening was maintained after four weeks following a single genipin treatment. Eyes from brown Norway rats were treated in vivo with a single 15 mM genipin retrobulbar injection, sham retrobulbar injection, or were left naive. Eyes were enucleated either 1 day or four weeks post-injection and underwent whole globe inflation testing. We assessed first principal Lagrange strain of the posterior sclera using digital image correlation as a proxy for scleral stiffness. Four weeks post-injection, genipin treatment resulted in a 58% reduction in scleral strain as compared to controls (p = 0.005). We conclude that a single in vivo injection of genipin effectively stiffened rat sclera for at least four weeks which motivates further functional studies and possible clinical translation of genipin-induced scleral stiffening.


Assuntos
Glaucoma , Iridoides/toxicidade , Miopia , Esclera , Animais , Glaucoma/induzido quimicamente , Glaucoma/diagnóstico por imagem , Glaucoma/metabolismo , Masculino , Miopia/induzido quimicamente , Miopia/diagnóstico por imagem , Miopia/metabolismo , Ratos , Esclera/diagnóstico por imagem , Esclera/metabolismo
7.
Biotechnol J ; 8(1): 73-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193104

RESUMO

Patterned scaffold surfaces provide a platform for highly defined cellular interactions, and have recently taken precedence in tissue engineering. Despite advances in patterning techniques and improved tissue growth, no clinical studies have been conducted for implantation of patterned biomaterials. Four major clinical application fields where patterned materials hold great promise are antimicrobial surfaces, cardiac constructs, neurite outgrowth, and stem cell differentiation. Specific examples include applications of patterned materials to (i) counter infection by antibiotic resistant bacteria, (ii) establish proper alignment and contractile force of regrown cardiac cells for repairing tissue damaged by cardiac infarction, (iii) increase neurite outgrowth for central nervous system wound repair, and (iv) host differentiated stem cells while preventing reversion to a pluripotent state. Moreover, patterned materials offer unique advantages for artificial implants which other constructs cannot. For example, by inducing selective cell adhesion using topographical cues, patterned surfaces present cellular orientation signals that lead to functional tissue architectures. Mechanical stimuli such as modulus, tension, and material roughness are known to influence tissue growth, as are chemical stimuli for cell adhesion. Scaffold surface patterns allow for control of these mechanical and chemical factors. This review identifies research advances in scaffold surface patterning, in light of pressing clinical needs requiring organization of cellular interactions.


Assuntos
Biotecnologia/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Humanos , Técnicas Analíticas Microfluídicas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...