Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 185(2): 170-183, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34897513

RESUMO

Studies have shown that some peptides and small molecules can induce non IgE-mediated anaphylactoid reactions through mast cell activation. Upon activation, mast cells degranulate and release vasoactive and proinflammatory mediators, from cytoplasmic granules into the extracellular environment which can induce a cascade of severe adverse reactions. This study describes a lead optimization strategy to select NaV1.7 inhibitor peptides that minimize acute mast cell degranulation (MCD) toxicities. Various in vitro, in vivo, and PKPD models were used to screen candidates and guide peptide chemical modifications to mitigate this risk. Anesthetized rats dosed with peptides demonstrated treatment-related decreases in blood pressure and increases in plasma histamine concentrations which were reversible with a mast cell stabilizer, supporting the MCD mechanism. In vitro testing in rat mast cells with NaV1.7 peptides demonstrated a concentration-dependent increase in histamine. Pharmacodynamic modeling facilitated establishing an in vitro to in vivo correlation for histamine as a biomarker for blood pressure decline via the MCD mechanism. These models enabled assessment of structure-activity relationship (SAR) to identify substructures that contribute to peptide-mediated MCD. Peptides with hydrophobic and cationic characteristics were determined to have an elevated risk for MCD, which could be reduced or avoided by incorporating anionic residues into the protoxin II scaffold. Our analyses support that in vitro MCD assessment in combination with PKPD modeling can guide SAR to improve peptide lead optimization and ensure an acceptable early in vivo tolerability profile with reduced resources, cycle time, and animal use.


Assuntos
Mastócitos , Medicamentos Sintéticos , Animais , Degranulação Celular , Chumbo , Mastócitos/metabolismo , Peptídeos/química , Peptídeos/toxicidade , Ratos , Medicamentos Sintéticos/metabolismo
2.
Hepatology ; 64(5): 1430-1441, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27474787

RESUMO

In 2015, European and U.S. health agencies issued warning letters in response to 9 reported clinical cases of severe bradycardia/bradyarrhythmia in hepatitis C virus (HCV)-infected patients treated with sofosbuvir (SOF) in combination with other direct acting antivirals (DAAs) and the antiarrhythmic drug, amiodarone (AMIO). We utilized preclinical in vivo models to better understand this cardiac effect, the potential pharmacological mechanism(s), and to identify a clinically translatable model to assess the drug-drug interaction (DDI) cardiac risk of current and future HCV inhibitors. An anesthetized guinea pig model was used to elicit a SOF+AMIO-dependent bradycardia. Detailed cardiac electrophysiological studies in this species revealed SOF+AMIO-dependent selective nodal dysfunction, with initial, larger effects on the sinoatrial node. Further studies in conscious, rhesus monkeys revealed an emergent bradycardia and bradyarrhythmia in 3 of 4 monkeys administered SOF+AMIO, effects not observed with either agent alone. Morever, bradycardia and bradyarrhythmia were not observed in rhesus monkeys when intravenous infusion of MK-3682 was completed after AMIO pretreatment. CONCLUSIONS: These are the first preclinical in vivo experiments reported to replicate the severe clinical SOF+AMIO cardiac DDI and provide potential in vivo mechanism of action. As such, these data provide a preclinical risk assessment paradigm, including a clinically relevant nonhuman primate model, with which to better understand cardiovascular DDI risk for this therapeutic class. Furthermore, these studies suggest that not all HCV DAAs and, in particular, not all HCV nonstructural protein 5B inhibitors may exhibit this cardiac DDI with amiodarone. Given the selective in vivo cardiac electrophysiological effect, these data enable targeted cellular/molecular mechanistic studies to more precisely identify cell types, receptors, and/or ion channels responsible for the clinical DDI. (Hepatology 2016;64:1430-1441).


Assuntos
Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Antivirais/farmacologia , Coração/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Nucleotídeos/antagonistas & inibidores , Sofosbuvir/farmacologia , Amiodarona/efeitos adversos , Animais , Antiarrítmicos/efeitos adversos , Antivirais/efeitos adversos , Interações Medicamentosas , Cobaias , Coração/fisiologia , Macaca mulatta , Masculino , Sofosbuvir/efeitos adversos
3.
Artigo em Inglês | MEDLINE | ID: mdl-26001325

RESUMO

INTRODUCTION: The anesthetized guinea pig (ANES GP) has proven to be an effective small animal model to evaluate cardiac electrophysiologic effects of drug-candidate molecules during lead optimization. While heart rate (HR) corrected QT interval (QTc) is a key variable to determine test article-dependent repolarization effects, ideal correction methods are an area of constant debate given the potential influence of anesthesia, autonomic tone, species, strain and gender on the QT/HR relationship. The aim of this study was to characterize the ability of common correction formulas to normalize rate-dependent effects on the QT interval in the ketamine/xylazine ANES GP. METHODS: Atrial pacing (n=10), ivabradine or ephedrine (n=6/group) infusions were used, respectively to evaluate the effects of a wide range of HRs on the QT/HR relationship. Correction formulas (Bazett [QTcb], Fridericia [QTcf] and Van de Water [QTcVdW]) were applied and the best fit formula was determined with the aid of the slope of their QT-HR linear relationship. RESULTS: From 100 to 220bpm, QTcb underestimated the change in QT interval duration (QT/HR slope=0.35 to 0.67). However, QTcVdW was more appropriate in this HR range (QT/HR slope=-0.07 and 0.09). At higher HRs (>220bpm), QTcb performed better (QT/HR slope=-0.02 and 0.07) as compared to QTcf (QT/HR slope=-0.18 to -0.1) and QTcVdW (QT/HR slope=-0.2 to -0.17) (p<0.01). All the correction formulas identified dofetilide- and sotalol-dependent repolarization delay (n=6/group) but QTcb and QTcf demonstrated reduced sensitivity as compared to fixed cardiac pacing (p<0.01). In contrast, QTcVdW resulted in an apparent underestimation of the QT interval duration at HR levels above the basal ketamine/xylazine ANES GP HRs (>220bpm) with ephedrine (n=6). DISCUSSION: The best fit correction formula in the ANES GP was highly dependent on the HR range. In the ketamine/xylazine model, QTcVdW performed best with HR <220bpm and QTcb performed best with HR >220bpm. The QTcVdW correction formula was thus selected in the ketamine/xylazine ANES GP since HRs in this model are generally within the optimal range for this correction formula.


Assuntos
Eletrocardiografia/métodos , Frequência Cardíaca/efeitos dos fármacos , Fenetilaminas/farmacologia , Sotalol/farmacologia , Sulfonamidas/farmacologia , Animais , Benzazepinas/farmacologia , Efedrina/farmacologia , Cobaias , Frequência Cardíaca/fisiologia , Ivabradina , Ketamina/administração & dosagem , Síndrome do QT Longo/diagnóstico , Masculino , Modelos Animais , Xilazina/administração & dosagem
4.
J Pharmacol Toxicol Methods ; 68(1): 137-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23649000

RESUMO

INTRODUCTION: In recent years, the anesthetized guinea pig has been used increasingly to evaluate the cardiovascular effects of drug-candidate molecules during lead optimization prior to conducting longer, more resource intensive safety pharmacology and toxicology studies. The aim of these studies was to evaluate the correlations between pharmacologically-induced ECG changes in the anesthetized cardiovascular guinea pig (CVGP) with ECG changes in conscious non-rodent telemetry models, human clinical studies and effects on key cardiac ion channels. METHODS: We compared the effects of 38 agents on ion channel inhibition to their ECG effects in the CVGP. 26 of these agents were also evaluated in non-rodent telemetry and compared to the results in the CVGP. RESULTS: The CVGP was highly sensitive for detecting QTc, PR and QRS interval prolongation mediated by inhibition of hERG, hCav1.2 and hNav1.5, respectively. There were robust correlations between ion channel inhibitory potencies and the free plasma concentrations (Cu) producing prolongation of the QTc, PR or QRS interval. Further evaluation showed that ECG changes in the CVGP were predictive of their effects on the QTc, PR and QRS intervals in non-rodent telemetry models with 92%, 92% and 100% accuracy, respectively. The CVGP proved to be 100% specific and 88%, 75% and 100% sensitive for QTc, PR and QRS interval prolongation, respectively. Similarly, the Cu that prolonged the QTc, PR and QRS in CVGP and humans correlated well. DISCUSSION: The CVGP is a sensitive model for assessing QTc, PR and QRS prolongation elicited by effects on hERG, hCav1.2 and hNav1.5, respectively. ECG changes in the CVGP are predictive of changes in non-rodent telemetry models and in humans (QTc). ECG parameters can be reliably evaluated with the CVGP model which increases the efficiency of CV derisking. Importantly, the design and implementation of this model is consistent with the "3Rs" for animal research.


Assuntos
Desenho de Fármacos , Canais Iônicos/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Anestesia , Animais , Eletrocardiografia , Cobaias , Humanos , Canais Iônicos/metabolismo , Masculino , Modelos Animais , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Telemetria , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...