Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 7(11): e2300913, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717229

RESUMO

Organic phase change materials (PCMs) are promising to utilize thermal energy from solar radiation for photothermal energy conversion. However, the issues of poor photo absorption and liquid leakage greatly restrict their practical application. Herein, a sustainable porous scaffold comprising periodate oxidized wood (POW) as the supporting material and in situ retains lignin as the light-absorber dopant are demonstrated. The π-π stacking ability of lignin molecules endows the retained lignin with efficient photonic energy harvesting characteristics for fast thermal conductivity to reach a higher maximal energy storage volume. The inherently porous structure of the POW scaffold enables excellent shape-stability, which bypasses the liquid leakage problem. The resulting POW/PCM composites exhibit superior comprehensive performance, including enhanced light absorption capacity, high photothermal conversion efficiency (≈86.7%), and high latent heat of 151 J g-1 . Furthermore, the POW/PCM composites also possess the ability to maintain a relatively constant indoor temperature when fixed atop the model house roof, showing great potential for their practical applications in the thermal regulation of intelligent buildings. This work not only paves a new way to obtain sustainable and effective porous scaffolds for sufficient photothermal energy conversion but also provides more possibilities for their practical application in the future.

2.
Foods ; 11(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36140914

RESUMO

When exposing food and feedstuff to cold atmospheric pressure plasmas (CAPP), e.g., for decontamination purposes, possible unwanted effects on the contained nutrients might occur. In the present study, we thus concentrated on CAPP-induced degrading effects on different sugars, namely glucose and sucrose. The treatments were performed using admixtures of argon and synthetic air over durations of up to 12min. Continuous degradation of sucrose and glucose was determined using ATR-FTIR and XPS analyses. OH stretching bands showed notable broadening in the ATR-FTIR spectra, which possibly indicates reduced crystallinity of the sugars caused by the CAPP treatment. In the fingerprint regions, most bands, especially the more intense C-O bands, showed decreases in peak heights. In addition, two new bands occurred after CAPP treatment. The bands were detectable in the range between 1800 and 1600cm-1 and potentially can be assigned to C=C and, after comparison with the results of the XPS measurements, O-C=O bindings. The XPS measurements also showed that the O-C=O bonds probably originated from earlier C-O bonds.

3.
Nano Lett ; 22(10): 4106-4114, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510868

RESUMO

A passive cooling strategy without any electricity input has shown a significant impact on overall energy consumption globally. However, designing tunable daytime radiative cooler to meet requirement of different weather conditions is still a big challenge, especially in hot, humid regions. Here, a novel type of tunable, thermally insulating and compressible cellulose nanocrystal (CNC) aerogel coolers is prepared via chemical cross-linking and unidirectional freeze casting process. Such aerogel coolers can achieve a subambient temperature drop of 9.2 °C under direct sunlight and promisingly reached the reduction of ∼7.4 °C even in hot, moist, and fickle extreme surroundings. The tunable cooling performance can be realized via controlling the compression ratio of shape-malleable aerogel coolers. Furthermore, energy consumption modeling of using such aerogel coolers in buildings in China shows 35.4% reduction of cooling energy. This work can pave the way toward designing high-performance, thermal-regulating materials for energy consumption savings.


Assuntos
Celulose , Temperatura Baixa , Celulose/química , Transição de Fase , Fenômenos Físicos , Temperatura
4.
Parasit Vectors ; 15(1): 52, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151358

RESUMO

Physical methods to control pest arthropods are increasing in importance, but detailed knowledge of the effects of some of these methods on the target organisms is lacking. The aim of this study was to use light sheet fluorescence microscopy (LSFM) in anatomical studies of blood-sucking arthropods in vivo to assess the suitability of this method to investigate the morphological structures of arthropods and changes in these structures over time, using the human louse Pediculus humanus (Phthiraptera: Pediculidae) as sample organism. Plasma treatment was used as an example of a procedure employed to control arthropods. The lice were prepared using an artificial membrane feeding method involving the ingestion of human blood alone and human blood with an added fluorescent dye in vitro. It was shown that such staining leads to a notable enhancement of the imaging contrast with respect to unstained whole lice and internal organs that can normally not be viewed by transmission microscopy but which become visible by this approach. Some lice were subjected to plasma treatment to inflict damage to the organisms, which were then compared to untreated lice. Using LSFM, a change in morphology due to plasma treatment was observed.These results demonstrate that fluorescence staining coupled with LSFM represents a powerful and straightforward method enabling the investigation of the morphology-including anatomy-of blood-sucking lice and other arthropods.


Assuntos
Artrópodes , Infestações por Piolhos , Pediculus , Animais , Corantes , Ingestão de Alimentos , Humanos , Membranas Artificiais , Microscopia de Fluorescência
5.
Polymers (Basel) ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35160457

RESUMO

Electrospun scaffolds can imitate the hierarchical structures present in the extracellular matrix, representing one of the main concerns of modern tissue engineering. They are characterized in order to evaluate their capability to support cells or to provide guidelines for reproducibility. The issues with widely used methods for morphological characterization are discussed in order to provide insight into a desirable methodology for electrospun scaffold characterization. Reported methods include imaging and physical measurements. Characterization methods harbor inherent limitations and benefits, and these are discussed and presented in a comprehensive selection matrix to provide researchers with the adequate tools and insights required to characterize their electrospun scaffolds. It is shown that imaging methods present the most benefits, with drawbacks being limited to required costs and expertise. By making use of more appropriate characterization, researchers will avoid measurements that do not represent their scaffolds and perhaps might discover that they can extract more characteristics from their scaffold at no further cost.

6.
Polymers (Basel) ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35012232

RESUMO

Electrospun scaffolds have a 3D fibrous structure that attempts to imitate the extracellular matrix in order to be able to host cells. It has been reported in the literature that controlling fiber surface topography produces varying results regarding cell-scaffold interactions. This review analyzes the relevant literature concerning in vitro studies to provide a better understanding of the effect that controlling fiber surface topography has on cell-scaffold interactions. A systematic approach following PRISMA, GRADE, PICO, and other standard methodological frameworks for systematic reviews was used. Different topographic interventions and their effects on cell-scaffold interactions were analyzed. Results indicate that nanopores and roughness on fiber surfaces seem to improve proliferation and adhesion of cells. The quality of the evidence is different for each studied cell-scaffold interaction, and for each studied morphological attribute. The evidence points to improvements in cell-scaffold interactions on most morphologically complex fiber surfaces. The discussion includes an in-depth evaluation of the indirectness of the evidence, as well as the potentially involved publication bias. Insights and suggestions about dose-dependency relationship, as well as the effect on particular cell and polymer types, are presented. It is concluded that topographical alterations to the fiber surface should be further studied, since results so far are promising.

7.
Nephrologe ; 16(6): 380-385, 2021.
Artigo em Alemão | MEDLINE | ID: mdl-34603535

RESUMO

Aspects of palliative medicine such as withholding and withdrawal of dialysis, initiating conservative therapy and cooperative end-of-life care have increasingly become part of standard renal care. The corresponding transfer of knowledge of palliative medicine principles has so far been lacking in training and further education. This consensus paper proposes structured curricular training for the kidney team based on principles of palliative care.

8.
Materials (Basel) ; 14(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34442924

RESUMO

Direct metal deposition (DMD) can be used for the cladding of surfaces as well as repairing and additive manufacturing of parts and features. Process monitoring and control methods ensure a consistent quality during manufacturing. Monitoring by optical emission spectroscopy of the process radiation can provide information on process conditions and the deposition layer. The object of this work is to measure optical emissions from the process using a spectrometer and identify element lines within the spectra. Single spectra have been recorded from the process. Single tracks of Co-based powder (MetcoClad21) were clad on an S235 base material. The influence of varying process parameters on the incidence and intensity of element lines has been investigated. Moreover, the interactions between the laser beam, powder jet, and substrate with regard to spectral emissions have been examined individually. The results showed that element lines do not occur regularly. Therefore, single spectra are sorted into spectra including element lines (type A) and those not including element lines (type B). Furthermore, only non-ionised elements could be detected, with chromium appearing frequently. It was shown that increasing the laser power increases the incidence of type A spectra and the intensity of specific Cr I lines. Moreover, element lines only occurred frequently during the interaction of the laser beam with the melt pool of the deposition layer.

9.
Micromachines (Basel) ; 12(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207746

RESUMO

In 1850, Austen Henry Layard discovered an approximately 3000-year-old, simple optical lens in Nimrud, Northern Iraq-the Nimrud lens, aka the Layard lens [...].

10.
ACS Appl Mater Interfaces ; 13(24): 28668-28678, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110125

RESUMO

Nanocomposites combine multiple favorable properties to achieve intriguing functionalities, but the formation of nanocomposites with only one constituent with the inclusion of multiple superior properties is still not known. Herein, novel self-compounded nanocomposite membranes from one single polymer-cellulose cinnamate (CCi)-with multiple outstanding properties are reported. The self-compounded membranes contain two distinct morphologies as CCi nanoparticles (CCi-NPs) and a CCi polymer matrix, while CCi-NPs are either firmly embedded in the CCi matrix or fused with adjacent CCi-NPs. The unique self-compounded nanostructure endows the membranes with a tensile strength of 94 MPa and Young's modulus of 3.1 GPa. The water vapor permeability, oxygen permeability, and oil permeability reach as low as (0.94 ± 0.03) × 10-11 g m-1 s-1 Pa-1, (8.48 ± 2.39) ×10-13 cm3·cm/cm2·s·cmHg, and 0.008 ± 0.003 g mm m-2 day-1, respectively. Moreover, self-compounded CCi nanocomposite membranes also demonstrate UV-shielding and photothermal conversion properties. UVB and UVC light are entirely blocked, while UVA light is partly blocked. The temperature increases from room temperature to 120 °C within 1 min under UV irradiation. In addition, CCi membranes also show remarkable thermal and humidity resistance. Based on these outstanding properties, CCi membranes are applied as food packaging materials. This work offers a new avenue to construct nanocomposites with multiple superior properties from one constituent, which is promising for diverse applications.

11.
Materials (Basel) ; 14(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810409

RESUMO

The chemical composition of ground and polished fused silica glass surfaces plays a decisive role in different applications of optics. In particular, a high level of carbon impurities is often undesirable for further processing and especially for gluing or cementing where adhesion failure may be attributed to carbonic surface-adherent contaminants. In this study, the surface carbon content at different stages of classical optics manufacturing was thus investigated. Two different standard processes-grinding and lapping with two final polishing processes using both polyurethane and pitch pads-were considered. After each process step, the chemical composition and roughness of the surface were analysed using X-ray photoelectron spectroscopy and atomic force microscopy. An obvious correlation between surface roughness and effective surface area, respectively, and the proportion of carbon contamination was observed. The lowest carbon contamination was found in case of lapped and pitch polished surfaces.

12.
ACS Nano ; 14(12): 16832-16839, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33290653

RESUMO

One-dimensional nanomaterials including cellulose nanocrystals (CNCs) and gold nanorods (GNRs) are widely used in optical materials due to their respective inherent features: birefringence with accompanying light retardation and surface plasmon resonance (SPR). Herein, we successfully combine these properties of both nanorods to generate synergistic and readily tunable structural colors in hybrid composite polymer films. CNCs and GNRs are embedded either in the same or in separate films after unidirectional alignment in dynamic hydrogels. By synergistically leveraging CNCs and GNRs with diverse amounts in hybrid films or stacked separate films, wide-ranging structural colors are obtained, far beyond those from films solely with aligned CNCs or GNRs. Higher GNR contents enhance light absorption at 520 nm with promoted magenta colors, while more CNCs affect the overall phase retardation with light absorption between 400 and 700 nm between crossed polarizers. Moreover, adjusting the angles between films solely with CNCs or GNRs via a stacking/rotating technique successively manipulates colors with flexible film combinations. By rotating the films with aligned GNRs (0-180°), light absorption can traverse from ∼500 to 650 nm. Thus, tuning the adjustable synergism of birefringence of CNCs and SPR of GNRs provides great potential for structural colors, which enlightens inspirations for designing functional optical materials.

13.
Nanomaterials (Basel) ; 10(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204519

RESUMO

In this publication, it is shown how to synthesize silver nanoparticles from silver cations out of aqueous solutions by the use of an atmospheric pressure plasma source. The use of an atmospheric pressure plasma leads to a very fast reduction of silver ions in extensive solvent volumes. In order to investigate the nanoparticle synthesis process, ultraviolet/visible (UV/VIS) absorption spectra were recorded in situ. By using transmission electron microscopy and by the analysis of UV/VIS spectra, the kinetics of silver nanoparticle formation by plasma influence can be seen in more detail. For example, there are two different sections visible in the synthesis during the plasma exposure process. The first section of the synthesis is characterized by a linear formation of small spherical particles of nearly constant size. The second section is predominated by saturation effects. Here, particle faults are increasingly formed, induced by changes in the particle shape and the fusion of those particles. The plasma exposure time, therefore, determines the shape and size distribution of the nanoparticles.

14.
Appl Opt ; 56(26): 7427-7434, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29048065

RESUMO

We report on investigations of the spatial variations of contamination, roughness, and index of refraction of classically manufactured polished fused silica surfaces. Therefore, laser-induced breakdown spectroscopy was used to probe surface and subsurface impurities via the detection of aluminum. Measurements at different positions on the surface of the cylindrical fused silica windows evidenced an almost contamination-free center region, whereas a relatively large contamination area was found close to the edge. In-depth measurements verify the presence of aluminum atoms in the bulk until a depth of several tens of microns for the edge region. In addition, atomic force microscopic measurements show that the surface roughness is larger in the center region compared to the edge. Further, the index of refraction increases from the center region towards the edge as measured via ellipsometry. The results indicate a nonuniform impact of the grinding, lapping, and polishing tools on the surface. The findings turn out to be of specific interest for different applications, particularly for the realization of large-scale high-performance coatings.

15.
Appl Opt ; 56(12): 3365-3371, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28430259

RESUMO

In this work, we investigated the generation of particles during pure laser and plasma-assisted laser ablation of titanium. Experiments were performed using a NIR picosecond laser at a wavelength of 1030 nm and a pulse duration of 8 ps. For plasma-assisted ablation, an atmospheric pressure dielectric barrier discharge plasma was applied where the process gas was argon. Quantitative particle distributions at sizes from 10 nm to 10 µm were determined. In addition, we evaluated the amount of ablated material via laser scanning microscopy. The ablated volume was significantly increased by a factor of 2 to 3 in the case of plasma-assisted ablation, depending on the applied laser dose. It is shown that the increase in particle volume and number of particles was lower than the ablated volume. However, when applying plasma simultaneously, the generation of small nanoparticles increases notably by a factor of up to 6.63 at a laser dose of 0.7 kJ/mm2 for particles with a mean diameter of 10 nm. The results suggest that even smaller particles than measurable are generated. Hence, plasma-assisted laser ablation could enhance the process efficiency, reduce the particle agglomeration, and give rise to an increase in generation of nanoparticles at the same time.

16.
Opt Lett ; 42(1): 49-52, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28059175

RESUMO

In this Letter we present a novel approach for increasing the nanosecond laser-induced damage threshold (LIDT) of sapphire windows. It is shown that after direct dielectric barrier discharge plasma treatment at atmospheric pressure for 90 s the LIDT is increased by a factor of 1.5 with respect to untreated samples. Several possible underlying mechanisms are introduced. For instance, organic contaminants and residues from polishing agents were removed by the plasma as ascertained by XPS measurements.

17.
Phys Rev E ; 96(5-1): 053210, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347637

RESUMO

Laboratory plasmas inherently exhibit temperature and density gradients leading to complex investigations. We show that plasmas generated by laser ablation can constitute a robust exception to this. Supported by emission features not observed with other sources, we achieve plasmas of various compositions which are both uniform and in local thermodynamic equilibrium. These properties characterize an ideal radiation source opening multiple perspectives in plasma spectroscopy. The finding also constitutes a breakthrough in the analytical field as fast analyses of complex materials become possible.

18.
Appl Opt ; 51(17): 3847-52, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22695664

RESUMO

We report on atmospheric pressure argon plasma-based surface treatment and hybrid laser-plasma ablation of barite crown glass N-BaK4 and heavy flint glass SF5. By pure plasma treatment, a significant surface smoothing, as well as an increase in both the surface energy and the strength of the investigated glass surfaces, was achieved. It was shown that for both glasses, hybrid laser plasma ablation allows an increase in the ablation depth by a factor of 2.1 with respect to pure laser ablation. The ablated volume was increased by an averaged factor of 1.5 for N-BaK4 and 3.7 for SF5.

19.
Opt Lett ; 37(4): 566-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22344108

RESUMO

In this Letter, we report on the near-surface modification of fused silica by applying a hydrogenous atmospheric pressure plasma jet at ambient temperature. A significant decrease in UV-transmission due to this plasma treatment was observed. By the use of secondary ion mass spectroscopy, the composition of the plasma-modified glass surface was investigated. It was found that the plasma treatment led to a reduction of a 100 nm thick SiO2 layer to SiOx of gradual depth-dependent composition. For this plasma-induced layer, depth-resolved characteristic optical parameters, such as index of refraction and dispersion, were determined. Further, a significant plasma-induced increase of the concentration of hydrogen in the bulk material was measured. The decrease in transmission is explained by the plasma-induced near-surface formation of SiOx on the one hand and the diffusion of hydrogen into the bulk material on the other hand.

20.
Appl Opt ; 47(7): 967-74, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18311268

RESUMO

We report on the development of an efficient and simple picosecond diode-pumped solid-state laser source with a versatile repetition rate (typically 1 Hz-1 MHz) for material processing applications. The laser source is based on a 4 MHz repetition rate mode-locked oscillator and a passive 3D multipass amplifier both based on Nd:YVO(4) crystals. Micromachining experiments were performed to study the influence of pulse energy on the machining quality for Al, Cu, paper, and glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...