Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(1): 1-11, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201183

RESUMO

We demonstrate a femtosecond tunable light source with a variable pulse repetition rate based on a synchronously pumped fiber-feedback optical parametric oscillator (FFOPO) that incorporates an extended-cavity design. The repetition rate can be reduced by an acousto-optical modulator in the FFOPO pump beam. The extended FFOPO cavity supports signal oscillation down to the 64th subharmonic. The high nonlinearity of the FFOPO threshold suppresses signal output for residual pump pulses that are transmitted by the pulse picker. We characterize the temporal pulse contrast ratio of the FFOPO signal output with a second-order cross-correlation measurement. This FFOPO system enables pulse picking with extraordinarily high values up to 111 dB suppression of adjacent pulses and exhibits a temporal contrast ratio that exceeds 130 dB. It generates fs-pulses with tunable wavelength from 1415-1750 nm and 2.5-3.8 µm and variable repetition rates ranging from 640 kHz to 41 MHz.

2.
Nat Phys ; 17(12): 1396-1401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966439

RESUMO

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.

3.
Sci Rep ; 9(1): 18474, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804519

RESUMO

The prototype of a quantum random number generator is a single photon which impinges onto a beam splitter and is then detected by single photon detectors at one of the two output paths. Prior to detection, the photon is in a quantum mechanical superposition state of the two possible outcomes with -ideally- equal amplitudes until its position is determined by measurement. When the two output modes are observed by a single photon detector, the generated clicks can be interpreted as ones and zeros - and a raw random bit stream is obtained. Here we implement such a random bit generator based on single photons from a defect center in diamond. We investigate the single photon emission of the defect center by an anti-bunching measurement. This certifies the "quantumness" of the supplied photonic input state, while the random "decision" is still based on the vacuum fluctuations at the open port of the beam-splitter. Technical limitations, such as intensity fluctuations, mechanical drift, and bias are discussed. A number of ways to suppress such unwanted effects, and an a priori entropy estimation are presented. The single photon nature allows for a characterization of the non-classicality of the source, and allows to determine a background fraction. Due to the NV-center's superior stability and optical properties, we can operate the generator under ambient conditions around the clock. We present a true 24/7 operation of the implemented random bit generator.

4.
Opt Lett ; 43(21): 5295-5298, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382991

RESUMO

The Macaluso-Corbino effect describes the optical rotation of light in the spectral proximity to an atomic resonance. One use of this effect is narrowband optical filtering. So-called Faraday filters utilize the difference of the two components of the refractive indices, which are split by the Zeeman effect in a longitudinal magnetic field. This allows for a net rotation of a linearly polarized input beam within the medium. Placing it between crossed polarizers therefore only allows light near resonance to pass. Since any resonant spectrum implies anomalous dispersion on resonance, these filters are often characterized as being based on this anomalous dispersion. This Letter analyses to what extent the anomalous dispersion and the anomalous rotation are relevant for Faraday filters. Considering the sign of the anomalous rotation introduces a strict criterion if the filter is operated in the line center or in the spectral wing of an atomic resonance.

5.
Sci Rep ; 7(1): 15420, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133925

RESUMO

The optical interaction of light and matter is modeled as an oscillating dipole in a plane wave electromagnetic field. We analyze absorption, scattering and extinction for this system by the energy flow, visualized as streamlines of the Poynting vector. Depending on the dissipative damping of the oscillator, a part of the streamlines ends up in the dipole. Based on a graphical investigation of the streamlines, this represents the absorption cross section, and forms a far-field absorption aperture. In the near-field of the oscillator, a modification of the aperture is observed. As in the case for a linear dipole, we model the energy flow and derive the effective absorption apertures for an oscillator with a circular dipole characteristics - such as an atom in free space.

6.
Sci Rep ; 7(1): 11760, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28924230

RESUMO

A two step excitation scheme in hot atomic sodium vapor is experimentally investigated. The observed effects reflect a coupling between the 32S, 32P and the 32D states. We present the relative dependence on detuning of the two utilized lasers around λ = 589 nm and 819 nm. Unlike expected, we achieve a higher detuning dependence of the probe and the coupling laser by a factor of approximately three. The presented work aimed for a Rydberg excitation and quantum light storage. Such schemes are usually implemented with a red laser on the D-line transition and a coupling laser of shorter (typically blue) wavelength. Due to the fact that higher P-Rydberg states are approximately two times higher in energy than the 32D state, a two photon transition from the atomic excited 32P state to a Rydberg P state is feasible. This might circumvent laser frequency doubling whereby only two lasers might mediate a three photon process. The scheme of adding three k-vectors allows for electromagnetically induced transparency experiments in which the resulting k-vector can be effectively reduced to zero. By measurements utilizing electric fields and an analysis of the emission spectrum of the atomic vapor, we can exclude the excitation of the P-P two photon transition.

7.
Rev Sci Instrum ; 88(2): 023103, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249519

RESUMO

The detection of environmental magnetic fields is well established by optically pumped atomic magnetometers. Another focus of magnetometry can be the research on magnetic or spin-active solid-state samples. Here we introduce a simple and compact design of a rubidium-based Mx magnetometer, which allows for hosting solid-state samples. The optical, mechanical, and electrical design is reported, as well as simple measurements which introduce the ground-state spin-relaxation time, the signal-to-noise ratio of a measurement, and subsequently the overall sensitivity of the magnetometer. The magnetometer is optimized for the most sensitive operation with respect to laser power and magnetic field excitation at the Larmor frequency.

8.
Nat Commun ; 7: 13632, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886194

RESUMO

Hybrid quantum systems integrating semiconductor quantum dots (QDs) and atomic vapours become important building blocks for scalable quantum networks due to the complementary strengths of individual parts. QDs provide on-demand single-photon emission with near-unity indistinguishability comprising unprecedented brightness-while atomic vapour systems provide ultra-precise frequency standards and promise long coherence times for the storage of qubits. Spectral filtering is one of the key components for the successful link between QD photons and atoms. Here we present a tailored Faraday anomalous dispersion optical filter based on the caesium-D1 transition for interfacing it with a resonantly pumped QD. The presented Faraday filter enables a narrow-bandwidth (Δω=2π × 1 GHz) simultaneous filtering of both Mollow triplet sidebands. This result opens the way to use QDs as sources of single as well as cascaded photons in photonic quantum networks aligned to the primary frequency standard of the caesium clock transition.

9.
Nano Lett ; 16(11): 7037-7045, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27700104

RESUMO

Newly discovered van der Waals materials like MoS2, WSe2, hexagonal boron nitride (h-BN), and recently C2N have sparked intensive research to unveil the quantum behavior associated with their 2D structure. Of great interest are 2D materials that host single quantum emitters. h-BN, with a band gap of 5.95 eV, has been shown to host single quantum emitters which are stable at room temperature in the UV and visible spectral range. In this paper we investigate correlations between h-BN structural features and emitter location from bulk down to the monolayer at room temperature. We demonstrate that chemical etching and ion irradiation can generate emitters in h-BN. We analyze the emitters' spectral features and show that they are dominated by the interaction of their electronic transition with a single Raman active mode of h-BN. Photodynamics analysis reveals diverse rates between the electronic states of the emitter. The emitters show excellent photo stability even under ambient conditions and in monolayers. Comparing the excitation polarization between different emitters unveils a connection between defect orientation and the h-BN hexagonal structure. The sharp spectral features, color diversity, room-temperature stability, long-lived metastable states, ease of fabrication, proximity of the emitters to the environment, outstanding chemical stability, and biocompatibility of h-BN provide a completely new class of systems that can be used for sensing and quantum photonics applications.

10.
Nat Mater ; 14(2): 164-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25437256

RESUMO

Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

11.
Sci Rep ; 4: 6552, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25298251

RESUMO

Narrow-band optical filtering is required in many spectroscopy applications to suppress unwanted background light. One example is quantum communication where the fidelity is often limited by the performance of the optical filters. This limitation can be circumvented by utilizing the GHz-wide features of a Doppler broadened atomic gas. The anomalous dispersion of atomic vapours enables spectral filtering. These, so-called, Faraday anomalous dispersion optical filters (FADOFs) can be by far better than any commercial filter in terms of bandwidth, transition edge and peak transmission. We present a theoretical and experimental study on the transmission properties of a sodium vapour based FADOF with the aim to find the best combination of optical rotation and intrinsic loss. The relevant parameters, such as magnetic field, temperature, the related optical depth, and polarization state are discussed. The non-trivial interplay of these quantities defines the net performance of the filter. We determine analytically the optimal working conditions, such as transmission and the signal to background ratio and validate the results experimentally. We find a single global optimum for one specific optical path length of the filter. This can now be applied to spectroscopy, guide star applications, or sensing.

12.
Nature ; 509(7498): 66-70, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784217

RESUMO

Future quantum communication will rely on the integration of single-photon sources, quantum memories and systems with strong single-photon nonlinearities. Two key parameters are crucial for the single-photon source: a high photon flux with a very small bandwidth, and a spectral match to other components of the system. Atoms or ions may act as single-photon sources--owing to their narrowband emission and their intrinsic spectral match to other atomic systems--and can serve as quantum nonlinear elements. Unfortunately, their emission rates are still limited, even for highly efficient cavity designs. Single solid-state emitters such as single organic dye molecules are significantly brighter and allow for narrowband photons; they have shown potential in a variety of quantum optical experiments but have yet to be interfaced with other components such as stationary memory qubits. Here we describe the optical interaction between Fourier-limited photons from a single organic molecule and atomic alkali vapours, which can constitute an efficient quantum memory. Single-photon emission rates reach up to several hundred thousand counts per second and show a high spectral brightness of 30,000 detectable photons per second per megahertz of bandwidth. The molecular emission is robust and we demonstrate perfect tuning to the spectral transitions of the sodium D line and efficient filtering, even for emitters at ambient conditions. In addition, we achieve storage of molecular photons originating from a single dibenzanthanthrene molecule in atomic sodium vapour. Given the large set of molecular emission lines matching to atomic transitions, our results enable the combination of almost ideal single-photon sources with various atomic vapours, such that experiments with giant single-photon nonlinearities, mediated, for example, by Rydberg atoms, become feasible.

13.
Phys Rev Lett ; 112(12): 120502, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724637

RESUMO

Phases of matter with nontrivial topological order are predicted to exhibit a variety of exotic phenomena, such as robust localized bound states in 1D systems, and edge states in 2D systems, which are expected to display spin helicity, immunity to backscattering, and weak antilocalization. In this Letter, we present an experimental observation of topological structures generated via the controlled implementation of two consecutive noncommuting rotations in photonic discrete-time quantum walks. The second rotation introduces valleylike Dirac points in the system, allowing us to create the nontrivial topological pattern. By choosing specific values for the rotations, it is possible to coherently drive the system between topological sectors characterized by different topological invariants. We probe the full topological landscape, demonstrating the emergence of localized bound states hosted at the topological boundaries, and the existence of extremely localized or delocalized non-Gaussian quantum states. Our results pave the way for the study of valley polarization and applications of topological mechanisms in robust optical-device engineering.

14.
Rev Sci Instrum ; 85(1): 013108, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517746

RESUMO

The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

15.
Rev Sci Instrum ; 85(12): 123703, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554297

RESUMO

Recent efforts to define microscopic solid-immersion-lenses (SIL) by focused ion beam milling into diamond substrates that are registered to a preselected single photon emitter are summarized. We show how we determine the position of a single emitter with at least 100 nm lateral and 500 nm axial accuracy, and how the milling procedure is optimized. The characteristics of a single emitter, a Nitrogen Vacancy (NV) center in diamond, are measured before and after producing the SIL and compared with each other. A count rate of 1.0 × 10(6) counts/s is achieved with a [111] oriented NV center.

16.
J Chem Phys ; 137(1): 014507, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22779665

RESUMO

To understand the optical properties of atoms in solid state matrices, the absorption, excitation, and emission spectra of rubidium doped thin-films of argon, krypton, and xenon were investigated in detail. A two-dimensional spectral analysis extends earlier reports on the excitation and emission properties of rubidium in rare-gas hosts. We found that the doped crystals of krypton and xenon exhibit a simple absorption-emission relation, whereas rubidium in argon showed more complicated spectral structures. Our sample preparation employed in the present work yielded different results for the Ar crystal, but our peak positions were consistent with the prediction based on the linear extrapolation of Xe and Kr data. We also observed a bleaching behavior in rubidium excitation spectra, which suggests a population transfer from one to another spectral feature due to hole-burning. The observed optical response implies that rubidium in rare-gas thin-films is detectable with extremely high sensitivity, possibly down to a single atom level, in low concentration samples.

17.
Phys Rev Lett ; 107(17): 170404, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107491

RESUMO

Entanglement witnesses such as Bell inequalities are frequently used to prove the nonclassicality of a light source and its suitability for further tasks. By demonstrating Bell inequality violations using classical light in common experimental arrangements, we highlight why strict locality and efficiency conditions are not optional, particularly in security-related scenarios.

18.
Nat Commun ; 2: 349, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21673670

RESUMO

Quantum key distribution (QKD) allows two remote parties to grow a shared secret key. Its security is founded on the principles of quantum mechanics, but in reality it significantly relies on the physical implementation. Technological imperfections of QKD systems have been previously explored, but no attack on an established QKD connection has been realized so far. Here we show the first full-field implementation of a complete attack on a running QKD connection. An installed eavesdropper obtains the entire 'secret' key, while none of the parameters monitored by the legitimate parties indicate a security breach. This confirms that non-idealities in physical implementations of QKD can be fully practically exploitable, and must be given increased scrutiny if quantum cryptography is to become highly secure.


Assuntos
Segurança Computacional/instrumentação , Teoria Quântica , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Análise de Falha de Equipamento
19.
Sensors (Basel) ; 11(1): 905-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22346610

RESUMO

Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes.

20.
Opt Lett ; 32(11): 1420-2, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17546141

RESUMO

We present scanning near-field extinction spectra of single molecules embedded in a solid matrix. By varying the tip-molecule separation, we modify the line shape of the spectra, demonstrating the coherent nature of the interaction between the incident laser light and the excited state of the molecule. We compare the measured data with the outcome of numerical calculations and find a very good agreement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...