Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7166, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935663

RESUMO

The conserved SR-like protein Npl3 promotes splicing of diverse pre-mRNAs. However, the RNA sequence(s) recognized by the RNA Recognition Motifs (RRM1 & RRM2) of Npl3 during the splicing reaction remain elusive. Here, we developed a split-iCRAC approach in yeast to uncover the consensus sequence bound to each RRM. High-resolution NMR structures show that RRM2 recognizes a 5´-GNGG-3´ motif leading to an unusual mille-feuille topology. These structures also reveal how RRM1 preferentially interacts with a CC-dinucleotide upstream of this motif, and how the inter-RRM linker and the region C-terminal to RRM2 contribute to cooperative RNA-binding. Structure-guided functional studies show that Npl3 genetically interacts with U2 snRNP specific factors and we provide evidence that Npl3 melts U2 snRNA stem-loop I, a prerequisite for U2/U6 duplex formation within the catalytic center of the Bact spliceosomal complex. Thus, our findings suggest an unanticipated RNA chaperoning role for Npl3 during spliceosome active site formation.


Assuntos
Splicing de RNA , RNA , Conformação de Ácido Nucleico , Ribonucleoproteína Nuclear Pequena U2/metabolismo , RNA/metabolismo , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
2.
Nat Commun ; 13(1): 5222, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064790

RESUMO

The trimeric serine protease HTRA1 is a genetic risk factor associated with geographic atrophy (GA), a currently untreatable form of age-related macular degeneration. Here, we describe the allosteric inhibition mechanism of HTRA1 by a clinical Fab fragment, currently being evaluated for GA treatment. Using cryo-EM, X-ray crystallography and biochemical assays we identify the exposed LoopA of HTRA1 as the sole Fab epitope, which is approximately 30 Å away from the active site. The cryo-EM structure of the HTRA1:Fab complex in combination with molecular dynamics simulations revealed that Fab binding to LoopA locks HTRA1 in a non-competent conformational state, incapable of supporting catalysis. Moreover, grafting the HTRA1-LoopA epitope onto HTRA2 and HTRA3 transferred the allosteric inhibition mechanism. This suggests a conserved conformational lock mechanism across the HTRA family and a critical role of LoopA for catalysis, which was supported by the reduced activity of HTRA1-3 upon LoopA deletion or perturbation. This study reveals the long-range inhibition mechanism of the clinical Fab and identifies an essential function of the exposed LoopA for activity of HTRA family proteases.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Degeneração Macular , Serina Endopeptidases , Cristalografia por Raios X , Epitopos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
3.
Bioessays ; 44(8): e2200066, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751450

RESUMO

Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three-dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error-prone RNA folding process. Following these dynamic events, long-range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how a nascent rRNA is transformed into a functional ribosome with high precision. With this essay, we aim to draw attention to the poorly understood process of establishing correct RNA tertiary contacts during ribosome formation.


Assuntos
Dobramento de RNA , RNA Ribossômico , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
4.
Nat Commun ; 12(1): 4696, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349113

RESUMO

Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Temperatura Baixa , GTP Fosfo-Hidrolases/metabolismo , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteoma/metabolismo , Dobramento de RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Commun Biol ; 4(1): 916, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34316015

RESUMO

Apolipoprotein L1 (ApoL1) is a circulating innate immunity protein protecting against trypanosome infection. However, two ApoL1 coding variants are associated with a highly increased risk of chronic kidney disease. Here we present X-ray and NMR structures of the N-terminal domain (NTD) of ApoL1 and of its closest relative ApoL2. In both proteins, four of the five NTD helices form a four-helix core structure which is different from the classical four-helix bundle and from the pore-forming domain of colicin A. The reactivity with a conformation-specific antibody and structural models predict that this four-helix motif is also present in the NTDs of ApoL3 and ApoL4, suggesting related functions within the small ApoL family. The long helix 5 of ApoL1 is conformationally flexible and contains the BH3-like region. This BH3-like α-helix resembles true BH3 domains only in sequence and structure but not in function, since it does not bind to the pro-survival members of the Bcl-2 family, suggesting a Bcl-2-independent role in cytotoxicity. These findings should expedite a more comprehensive structural and functional understanding of the ApoL immune protein family.


Assuntos
Apolipoproteína L1/química , Apolipoproteínas L/química , Domínios Proteicos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Apolipoproteínas L/genética , Apolipoproteínas L/metabolismo , Humanos
6.
Commun Biol ; 3(1): 687, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214666

RESUMO

Vascular leakage, or edema, is a serious complication of acute allergic reactions. Vascular leakage is triggered by the release of histamine and serotonin from granules within tissue-resident mast cells. Here, we show that expression of Neutrophil Serine Protease 4 (NSP4) during the early stages of mast cell development regulates mast cell-mediated vascular leakage. In myeloid precursors, the granulocyte-macrophage progenitors (GMPs), loss of NSP4 results in the decrease of cellular levels of histamine, serotonin and heparin/heparan sulfate. Mast cells that are derived from NSP4-deficient GMPs have abnormal secretory granule morphology and a sustained reduction in histamine and serotonin levels. Consequently, in passive cutaneous anaphylaxis and acute arthritis models, mast cell-mediated vascular leakage in the skin and joints is substantially reduced in NSP4-deficient mice. Our findings reveal that NSP4 is required for the proper storage of vasoactive amines in mast cell granules, which impacts mast cell-dependent vascular leakage in mouse models of immune complex-mediated diseases.


Assuntos
Mastócitos/enzimologia , Serina Proteases/metabolismo , Transferência Adotiva , Animais , Complexo Antígeno-Anticorpo , Regulação Enzimológica da Expressão Gênica , Histamina/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos , Serina Proteases/genética , Serotonina/metabolismo
7.
FEBS J ; 287(16): 3565-3578, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31945259

RESUMO

The locus of the human proprotein convertase subtilisin-kexin type-7 (PC7) gene (PCSK7) is on chromosome 11q23.3 close to the gene cluster APOA5/APOA4/APOC3/APOA1, a region implicated in the regulation of lipoprotein metabolism. A GWAS reported the association of PCSK7 SNPs with plasma triglyceride (TG), and exome sequencing of African Americans revealed the association of a low-frequency coding variant of PC7 (R504H; SNP rs142953140) with a ~ 30% TG reduction. Another PCSK7 SNP rs508487 is in linkage disequilibrium with a promoter variant of the liver-derived apolipoprotein A-V (apoA-V), an indirect activator of the lipoprotein lipase (LpL), and is associated with elevated TG levels. We thus hypothesized that PC7 regulates the levels/activity of apoA-V. Studies in the human hepatic cell line HuH7 revealed that wild-type (WT) PC7 and its endoplasmic reticulum (ER)-retained forms bind to and enhance the degradation of human apoA-V in acidic lysosomes in a nonenzymatic fashion. PC7-induced degradation of apoA-V is inhibited by bafilomycin A1 and the alkalinizing agents: chloroquine and NH4 Cl. Thus, the PC7-induced apoA-V degradation implicates an ER-lysosomal communication inhibited by bafilomycin A1. In vitro, the natural R504H mutant enhances PC7 Ser505 phosphorylation at the structurally exposed Ser-X-Glu507 motif recognized by the secretory kinase Fam20C. Co-expression of the phosphomimetic PC7-S505E with apoA-V resulted in lower degradation compared to WT, suggesting that Ser505 phosphorylation of PC7 lowers TG levels via reduced apoA-V degradation. In agreement, in Pcsk7-/- mice fed high-fat diet, plasma apoA-V levels and adipocyte LpL activity are increased, providing an in vivo mechanistic link for a role of liver PC7 in enhanced TG storage in adipocytes.


Assuntos
Apolipoproteína A-V/metabolismo , Fígado/metabolismo , Subtilisinas/genética , Triglicerídeos/metabolismo , Animais , Apolipoproteína A-V/sangue , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Hepatócitos/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Subtilisinas/metabolismo , Triglicerídeos/sangue , Sequenciamento do Exoma/métodos
8.
Biochimie ; 166: 19-26, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30946946

RESUMO

The recently discovered neutrophil serine protease 4 (NSP4) is the fourth member of the NSP family, which includes the well-studied neutrophil elastase, proteinase 3 and cathepsin G. Like the other three NSP members, NSP4 is synthesized by myeloid precursors in the bone marrow and, after cleavage of the two-amino acid activation peptide, is stored as an active protease in azurophil granules of neutrophils. Based on its primary amino acid sequence, NSP4 is predicted to have a shallow S1 specificity pocket with elastase-like substrate specificity. However, NSP4 was found to preferentially cleave after an arginine residue. Structural studies resolved this paradox by revealing an unprecedented mechanism of P1-arginine recognition. In contrast to the canonical mechanism in which the P1-arginine residue points down into a deep S1 pocket, the arginine side chain adopts a surface-exposed 'up' conformation in the NSP4 active site. This conformation is stabilized by the Phe190 residue, which serves as a hydrophobic platform for the aliphatic portion of the arginine side chain, and a network of hydrogen bonds between the arginine guanidium group and the NSP4 residues Ser192 and Ser216. This unique configuration allows NSP4 to cleave even after naturally modified arginine residues, such as citrulline and methylarginine. This non-canonical mechanism, characterized by the hallmark 'triad' Phe190-Ser192-Ser216, is largely preserved throughout evolution starting with bony fish, which appeared about 400 million years ago. Although the substrates and physiological role of NSP4 remain to be determined, its remarkable evolutionary conservation, restricted tissue expression and homology to other neutrophil serine proteases anticipate a function in immune-related processes.


Assuntos
Arginina/química , Neutrófilos/enzimologia , Proteólise , Serina Endopeptidases/química , Animais , Domínio Catalítico , Humanos , Cinética , Camundongos , Especificidade por Substrato
9.
EMBO J ; 37(7)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29459436

RESUMO

Final maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre-RNA Using cryo-electron microscopy (cryo-EM), we have determined the structure of a yeast cytoplasmic pre-40S particle in complex with Enp1, Ltv1, Rio2, Tsr1, and Pno1 assembly factors poised to initiate final maturation. The structure reveals that the pre-rRNA adopts a highly distorted conformation of its 3' major and 3' minor domains stabilized by the binding of the assembly factors. This observation is consistent with a mechanism that involves concerted release of the assembly factors orchestrated by the folding of the rRNA in the head of the pre-40S subunit during the final stages of maturation. Our results provide a structural framework for the coordination of the final maturation events that drive a pre-40S particle toward the mature form capable of engaging in translation.


Assuntos
Microscopia Crioeletrônica , Simulação de Acoplamento Molecular , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Citoplasma , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestrutura , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/ultraestrutura , Dobramento de RNA , RNA Ribossômico/química , RNA Ribossômico/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/isolamento & purificação , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
10.
Cell ; 164(1-2): 91-102, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26709046

RESUMO

Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation.


Assuntos
Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Chaetomium/metabolismo , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Alinhamento de Sequência
11.
Int Rev Cell Mol Biol ; 319: 107-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26404467

RESUMO

Accurate translation of the genetic code into functional polypeptides is key to cellular growth and proliferation. This essential process is carried out by the ribosome, a ribonucleoprotein complex of remarkable size and intricacy. Although the structure of the mature ribosome has provided insight into the mechanism of translation, our knowledge regarding the assembly, quality control, and intracellular targeting of this molecular machine is still emerging. Assembly of the eukaryotic ribosome begins in the nucleolus and requires more than 350 conserved assembly factors, which transiently associate with the preribosome at specific maturation stages. After accomplishing their tasks, early-acting assembly factors are released, preparing preribosomes for nuclear export. Export competent preribosomal subunits are transported through nuclear pore complexes into the cytoplasm, where they undergo final maturation steps, which are closely connected to quality control, before engaging in translation. In this chapter, we focus on the final events that commit correctly assembled ribosomal subunits for translation.


Assuntos
Núcleo Celular/metabolismo , Células Eucarióticas/metabolismo , Ribossomos/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Nucléolo Celular/metabolismo , Humanos , Proteínas Ribossômicas/metabolismo
12.
Chromosoma ; 123(4): 327-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24817020

RESUMO

The ribosome is responsible for the final step of decoding genetic information into proteins. Therefore, correct assembly of ribosomes is a fundamental task for all living cells. In eukaryotes, the construction of the ribosome which begins in the nucleolus requires coordinated efforts of >350 specialized factors that associate with pre-ribosomal particles at distinct stages to perform specific assembly steps. On their way through the nucleus, diverse energy-consuming enzymes are thought to release assembly factors from maturing pre-ribosomal particles after accomplishing their task(s). Subsequently, recruitment of export factors prepares pre-ribosomal particles for transport through nuclear pore complexes. Pre-ribosomes are exported into the cytoplasm in a functionally inactive state, where they undergo final maturation before initiating translation. Accumulating evidence indicates a tight coupling between nuclear export, cytoplasmic maturation, and final proofreading of the ribosome. In this review, we summarize our current understanding of nuclear export of pre-ribosomal subunits and cytoplasmic maturation steps that render pre-ribosomal subunits translation-competent.


Assuntos
Núcleo Celular/metabolismo , Ribossomos/metabolismo , Saccharomycetales/metabolismo , Transporte Ativo do Núcleo Celular , Modelos Moleculares , Subunidades Ribossômicas/metabolismo
13.
Nucleic Acids Res ; 42(12): 8092-105, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24838563

RESUMO

The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5'end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5'end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing proteins.


Assuntos
Regiões 3' não Traduzidas , Proteínas de Caenorhabditis elegans/química , Proteínas de Ligação a RNA/química , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico , Uracila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...