Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 7(7): 1408-16, 2001 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11330893

RESUMO

A kinetic and product study of the OH- -induced decay in H2O of the radical cations generated from some di-and tri-methoxy-substituted 1-arylalkanols (ArCH(OH)R*+) and 2- and 3-(3,4-dimethoxyphenyl)alkanols has been carried out by using pulse- and gamma-radiolysis techniques. In the 1-arylalkanol system, the radical cation 3,4-(MeO)2C6H3CH2-OH*+ decay at a rate more than two orders of magnitude higher than that of its methyl ether; this indicates the key role of the side-chain OH group in the decay process (oxygen acidity). However, quite a large deuterium kinetic isotope effect (3.7) is present for this radical cation compared with its a-dideuterated counterpart. A mechanism is suggested in which a fast OH deprotonation leads to a radical zwitterion which then undergoes a rate-determining 1,2-H shift, coupled to a side-chain-to-ring intramolecular electron transfer (ET) step. This concept also attributes an important role to the energy barrier for this ET, which should depend on the stability of the positive charge in the ring and, hence, on the number and position of methoxy groups. On a similar experimental basis, the same mechanism is suggested for 2,5-(MeO)2C6H3CH2OH*+ as for 3,4-(MeO)2C6H3CH2OH*+, in which some contribution from direct C-H deprotonation (carbon acidity) is possible. In fact, the latter process dominates the decay of the trimethoxylated system 2,4,5-(MeO)3C6H2CH2-OH*+, which, accordingly, reacts with OH- at the same rate as that of its methyl ether. Thus, a shift from oxygen to carbon acidity is observed as the positive charge is increasingly stabilized in the ring; this is attributed to a corresponding increase in the energy barrier for the intramolecular ET. When R=tBu, the OH- -promoted decay of the radical cation ArCH(OH)R*+ leads to products of C-C bond cleavage. With both Ar = 3,4- and 2,5-dimethoxyphenyl the reactivity is three orders of magnitude higher than that of the corresponding cumyl alcohol radical cations; this suggests a mechanism in which a key role is played by the oxygen acidity as well as by the strength of the scissile C-C bond: a radical zwitterion is formed which undergoes a rate-determining C-C bond cleavage, coupled with the intramolecular ET. Finally, oxygen acidity also determines the reactivity of the radical cations of 2-(3,4-dimethoxyphenyl)ethanol and 3-(3,4-dimethoxyphenyl)propanol. In the former the decay involves C-C bond cleavage, in the latter it leads to 3-(3,4-dimethoxyphenyl)propanal. In both cases no products of C-H deprotonation were observed. Possible mechanisms, again involving the initial formation of a radical zwitterion, are discussed.

2.
Eur J Biochem ; 267(9): 2705-10, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10785393

RESUMO

The reaction of H2O2 with 4-substituted aryl alkyl sulfides (4-XC6H4SR), catalysed by lignin peroxidase (LiP) from Phanerochaete chrysosporium, leads to the formation of sulfoxides, accompanied by diaryl disulfides. The yields of sulfoxide are greater than 95% when X = OMe, but decrease significantly as the electron donating power of the substituent decreases. No reaction is observed for X = CN. The bulkiness of the R group has very little influence on the efficiency of the reaction, except for R = tBu. The reaction exhibits enantioselectivity (up to 62% enantiomeric excess with X = Br, with preferential formation of the sulfoxide with S configuration). Enantioselectivity decreases with increasing electron density of the sulfide. Experiments in H218O show partial or no incorporation of the labelled oxygen into the sulfoxide, with the extent of incorporation decreasing as the ring substituents become more electron-withdrawing. On the basis of these results, it is suggested that LiP compound I (formed by reaction between the native enzyme and H2O2), reacts with the sulfide to form a sulfide radical cation and LiP compound II. The radical cation is then converted to sulfoxide either by reaction with the medium or by a reaction with compound II, the competition between these two pathways depending on the stability of the radical cation.


Assuntos
Peroxidases/metabolismo , Phanerochaete/enzimologia , Sulfetos/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...