Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 514: 109-116, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38908500

RESUMO

The ability to label proteins by fusion with genetically encoded fluorescent proteins is a powerful tool for understanding dynamic biological processes. However, current approaches for expressing fluorescent protein fusions possess drawbacks, especially at the whole organism level. Expression by transgenesis risks potential overexpression artifacts while fluorescent protein insertion at endogenous loci is technically difficult and, more importantly, does not allow for tissue-specific study of broadly expressed proteins. To overcome these limitations, we have adopted the split fluorescent protein system mNeonGreen21-10/11 (split-mNG2) to achieve tissue-specific and endogenous protein labeling in zebrafish. In our approach, mNG21-10 is expressed under a tissue-specific promoter using standard transgenesis while mNG211 is inserted into protein-coding genes of interest using CRISPR/Cas-directed gene editing. Each mNG2 fragment on its own is not fluorescent, but when co-expressed the fragments self-assemble into a fluorescent complex. Here, we report successful use of split-mNG2 to achieve differential labeling of the cytoskeleton genes tubb4b and krt8 in various tissues. We also demonstrate that by anchoring the mNG21-10 component to specific cellular compartments, the split-mNG2 system can be used to manipulate protein localization. Our approach should be broadly useful for a wide range of applications.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Sistemas CRISPR-Cas , Animais Geneticamente Modificados , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Especificidade de Órgãos/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Edição de Genes/métodos , Regiões Promotoras Genéticas/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética
2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464062

RESUMO

The ability to label proteins by fusion with genetically encoded fluorescent proteins is a powerful tool for understanding dynamic biological processes. However, current approaches for expressing fluorescent protein fusions possess drawbacks, especially at the whole organism level. Expression by transgenesis risks potential overexpression artifacts while fluorescent protein insertion at endogenous loci is technically difficult and, more importantly, does not allow for tissue-specific study of broadly expressed proteins. To overcome these limitations, we have adopted the split fluorescent protein system mNeonGreen21-10/11 (split-mNG2) to achieve tissue-specific and endogenous protein labeling in zebrafish. In our approach, mNG21-10 is expressed under a tissue-specific promoter using standard transgenesis while mNG211 is inserted into protein-coding genes of interest using CRISPR/Cas-directed gene editing. Each mNG2 fragment on its own is not fluorescent, but when co-expressed the fragments self-assemble into a fluorescent complex. Here, we report successful use of split-mNG2 to achieve differential labeling of the cytoskeleton genes tubb4b and krt8 in various tissues. We also demonstrate that by anchoring the mNG21-10 component to specific cellular compartments, the split-mNG2 system can be used to manipulate protein function. Our approach should be broadly useful for a wide range of applications.

3.
Immunohorizons ; 7(8): 577-586, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555846

RESUMO

Phospholipase D4 (PLD4) is an endolysosomal exonuclease of ssRNA and ssDNA, rather than a phospholipase as its name suggests. Human polymorphisms in the PLD4 gene have been linked by genome-wide association studies to systemic sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. However, B6.129 Pld4-/- mice develop features of a distinct disease, macrophage activation syndrome, which is reversed in mice mutated in TLR9. In this article, we compare a Pld4 null mutant identified on the BALB/c background, Pld4thss/thss, which has distinct phenotypes: short stature, thin hair, and features of systemic lupus erythematosus. All phenotypes analyzed were largely normalized in Pld4thss/thssTlr9-/- mice. Thus, Pld4thss/thss represents a rare model in which mouse lupus etiology is TLR9 dependent. Compared with PLD4-deficient B6 mice, Pld4thss/thss mice had elevated levels of serum IgG, IgG anti-dsDNA autoantibodies, BAFF, and IFN-γ and elevated B cell numbers. Overall, the data suggest that PLD4 deficiency can lead to a diverse array of rheumatological abnormalities depending upon background-modifying genes, and that these diseases of PLD4 deficiency are largely driven by TLR9 recognition of ssDNA.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor Toll-Like 9 , Animais , Humanos , Camundongos , Exonucleases/genética , Estudo de Associação Genômica Ampla , Imunoglobulina G/genética , Lúpus Eritematoso Sistêmico/genética , Fosfolipases , Receptor Toll-Like 9/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...