Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271027

RESUMO

The COVID-19 pandemic has highlighted the need for vaccines capable of providing rapid and robust protection. One way to improve vaccine efficacy is delivery via microarray patches, such as the Vaxxas high-density microarray patch (HD-MAP). We have previously demonstrated that delivery of a SARS-CoV-2 protein vaccine candidate, HexaPro, via the HD-MAP induces potent humoral immune responses. Here, we investigate the cellular responses induced by HexaPro HD-MAP vaccination. We found that delivery via the HD-MAP induces a type one biassed cellular response of much greater magnitude as compared to standard intramuscular immunization.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Camundongos , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Imunidade Celular , Vacinas contra COVID-19 , Anticorpos Antivirais , Imunidade Humoral , Anticorpos Neutralizantes
2.
Vaccines (Basel) ; 10(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35455326

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to disrupt essential health services in 90 percent of countries today. The spike (S) protein found on the surface of the causative agent, the SARS-CoV-2 virus, has been the prime target for current vaccine research since antibodies directed against the S protein were found to neutralize the virus. However, as new variants emerge, mutations within the spike protein have given rise to potential immune evasion of the response generated by the current generation of SARS-CoV-2 vaccines. In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants.

3.
Vaccines (Basel) ; 9(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34835234

RESUMO

Alternative delivery systems such as the high-density microarray patch (HD-MAP) are being widely explored due to the variety of benefits they offer over traditional vaccine delivery methods. As vaccines are dry coated onto the HD-MAP, there is a need to ensure the stability of the vaccine in a solid state upon dry down. Other challenges faced are the structural stability during storage as a dried vaccine and during reconstitution upon application into the skin. Using a novel live chimeric virus vaccine candidate, BinJ/DENV2-prME, we explored a panel of pharmaceutical excipients to mitigate vaccine loss during the drying and storage process. This screening identified human serum albumin (HSA) as the lead stabilizing excipient. When bDENV2-coated HD-MAPs were stored at 4 °C for a month, we found complete retention of vaccine potency as assessed by the generation of potent virus-neutralizing antibody responses in mice. We also demonstrated that HD-MAP wear time did not influence vaccine deposition into the skin or the corresponding immunological outcomes. The final candidate formulation with HSA maintained ~100% percentage recovery after 6 months of storage at 4 °C.

4.
Sci Adv ; 7(44): eabj8065, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714668

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 160 million people and resulted in more than 3.3 million deaths, and despite the availability of multiple vaccines, the world still faces many challenges with their rollout. Here, we use the high-density microarray patch (HD-MAP) to deliver a SARS-CoV-2 spike subunit vaccine directly to the skin. We show that the vaccine is thermostable on the patches, with patch delivery enhancing both cellular and antibody immune responses. Elicited antibodies potently neutralize clinically relevant isolates including the Alpha and Beta variants. Last, a single dose of HD-MAP­delivered spike provided complete protection from a lethal virus challenge in an ACE2-transgenic mouse model. Collectively, these data show that HD-MAP delivery of a SARS-CoV-2 vaccine was superior to traditional needle-and-syringe vaccination and may be a significant addition to the ongoing COVID-19 (coronavirus disease 2019) pandemic.

5.
PLoS One ; 16(7): e0255282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34329337

RESUMO

Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier to use and more cost-effective method for administration of vaccines when compared to the needle and syringe. Since MAPs deliver vaccine to the dermis and epidermis, a degree of local immune response at the site of application is expected. In a phase 1 clinical trial (ACTRN 12618000112268), the Vaxxas high-density MAP (HD-MAP) was used to deliver a monovalent, split inactivated influenza virus vaccine into the skin. HD-MAP immunisation led to significantly enhanced humoral responses on day 8, 22 and 61 compared with IM injection of a quadrivalent commercial seasonal influenza vaccine (Afluria Quadrivalent®). Here, the aim was to analyse cellular responses to HD-MAPs in the skin of trial subjects, using flow cytometry and immunohistochemistry. HD-MAPs were coated with a split inactivated influenza virus vaccine (A/Singapore/GP1908/2015 [H1N1]), to deliver 5 µg haemagglutinin (HA) per HD-MAP. Three HD-MAPs were applied to the volar forearm (FA) of five healthy volunteers (to achieve the required 15 µg HA dose), whilst five control subjects received three uncoated HD-MAPs (placebo). Local skin response was recorded for over 61 days and haemagglutination inhibition antibody titres (HAI) were assessed on days 1, 4, 8, 22, and 61. Skin biopsies were taken before (day 1), and three days after HD-MAP application (day 4) and analysed by flow-cytometry and immunohistochemistry to compare local immune subset infiltration. HD-MAP vaccination with 15 µg HA resulted in significant HAI antibody titres compared to the placebo group. Application of uncoated placebo HD-MAPs resulted in mild erythema and oedema in most subjects, that resolved by day 4 in 80% of subjects. Active, HA-coated HD-MAP application resulted in stronger erythema responses on day 4, which resolved between days 22-61. Overall, these erythema responses were accompanied by an influx of immune cells in all subjects. Increased cell infiltration of CD3+, CD4+, CD8+ T cells as well as myeloid CD11b+ CD11c+ and non-myeloid CD11b- dendritic cells were observed in all subjects, but more pronounced in active HD-MAP groups. In contrast, CD19+/CD20+ B cell counts remained unchanged. Key limitations include the use of an influenza vaccine, to which the subjects may have had previous exposure. Different results might have been obtained with HD-MAPs inducing a primary immune response. In conclusion, influenza vaccine administered to the forearm (FA) using the HD-MAP was well-tolerated and induced a mild to moderate skin response with lymphocytic infiltrate at the site of application.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Sistemas de Liberação de Medicamentos , Imunidade Celular/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Pele/imunologia , Adulto , Antígenos CD/imunologia , Feminino , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
6.
NPJ Vaccines ; 6(1): 66, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963191

RESUMO

Dengue viruses (DENV) cause an estimated 390 million infections globally. With no dengue-specific therapeutic treatment currently available, vaccination is the most promising strategy for its control. A wide range of DENV vaccines are in development, with one having already been licensed, albeit with limited distribution. We investigated the immunogenicity and protective efficacy of a chimeric virus vaccine candidate based on the insect-specific flavivirus, Binjari virus (BinJV), displaying the structural prM/E proteins of DENV (BinJ/DENV2-prME). In this study, we immunized AG129 mice with BinJ/DENV2-prME via a needle-free, high-density microarray patch (HD-MAP) delivery system. Immunization with a single, 1 µg dose of BinJ/DENV2-prME delivered via the HD-MAPs resulted in enhanced kinetics of neutralizing antibody induction when compared to needle delivery and complete protection against mortality upon virus challenge in the AG129 DENV mouse model.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-446357

RESUMO

SARS-CoV-2 has infected over 160 million people and resulted in more than 3.3 million deaths, and we still face many challenges in the rollout of vaccines. Here, we use the high-density microarray patch to deliver a SARS-CoV-2 spike subunit vaccine directly to the skin. We show the vaccine, dry-coated on the patch is thermostable, and delivery of spike via HD-MAP induced greater cellular and antibody immune responses, with serum able to potently neutralize clinically relevant isolates including those from the B.1.1.7 and B.1.351 lineages. Finally, a single dose of HD-MAP-delivered spike provided complete protection from a lethal virus challenge, demonstrating that HD-MAP delivery of a SARS-CoV-2 vaccine is superior to traditional needle-and-syringe vaccination and has the potential to greatly impact the ongoing COVID-19 pandemic.

8.
Ecotoxicol Environ Saf ; 208: 111703, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396034

RESUMO

Polychlorinated biphenyls (PCBs) are widespread persistent pollutants deleterious for environment and very dangerous for human kind. As the bioremediation of PCB polluted sites by model white-rot fungi is still unsatisfactory, the use of efficient native strains which have the natural capacity to develop on polluted sites may constitute a relevant alternative strategy. In this study, we isolated 12 fungal strains from PCB contaminated soil and sediment, improved the screening method to obtain the most efficient ones in biodegradation and detoxification of PCBs and characterized potential underlying enzymatic activities. Four strains Penicillium chrysogenum, P. citreosulfuratum, P. canescens and Aspergillus jensenii, showed remarkable biodegradation capacities, greater than 70%. The remaining PCB-toxicity of their culture, including that of Trametes versicolor and Acremonium sclerotigenum, which present interesting ecological and metabolic properties, was studied. Only P. canescens was able to significantly reduce the toxicity related to PCBs and their metabolites. The enzymatic activities induced by PCBs were different according to the strains, namely laccases in T. versicolor and peroxidases in Ac. sclerotigenum. Our promising results show that the use of native fungal strains can constitute an effective strategy in the depollution of PCB polluted sites.


Assuntos
Fungos/isolamento & purificação , Fungos/metabolismo , Bifenilos Policlorados/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Fungos/classificação , Humanos , Lacase/metabolismo , Peroxidases/metabolismo
9.
PLoS Med ; 17(3): e1003024, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181756

RESUMO

BACKGROUND: The Vaxxas high-density microarray patch (HD-MAP) consists of a high density of microprojections coated with vaccine for delivery into the skin. Microarray patches (MAPs) offer the possibility of improved vaccine thermostability as well as the potential to be safer, more acceptable, easier to use, and more cost-effective for the administration of vaccines than injection by needle and syringe (N&S). Here, we report a phase I trial using the Vaxxas HD-MAP to deliver a monovalent influenza vaccine that was to the best of our knowledge the first clinical trial to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. METHODS AND FINDINGS: HD-MAPs were coated with a monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/2015 H1N1 haemagglutinin (HA). Between February 2018 and March 2018, 60 healthy adults (age 18-35 years) in Melbourne, Australia were enrolled into part A of the study and vaccinated with either: HD-MAPs delivering 15 µg of A/Singapore/GP1908/2015 H1N1 HA antigen (A-Sing) to the volar forearm (FA); uncoated HD-MAPs; intramuscular (IM) injection of commercially available quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 H1N1 HA (15 µg/dose); or IM injection of H1N1 HA antigen (15 µg/dose). After 22 days' follow-up and assessment of the safety data, a further 150 healthy adults were enrolled and randomly assigned to 1 of 9 treatment groups. Participants (20 per group) were vaccinated with HD-MAPs delivering doses of 15, 10, 5, 2.5, or 0 µg of HA to the FA or 15 µg HA to the upper arm (UA), or IM injection of QIV. The primary objectives of the study were safety and tolerability. Secondary objectives were to assess the immunogenicity of the influenza vaccine delivered by HD-MAP. Primary and secondary objectives were assessed for up to 60 days post-vaccination. Clinical staff and participants were blind as to which HD-MAP treatment was administered and to administration of IM-QIV-15 or IM-A/Sing-15. All laboratory investigators were blind to treatment and participant allocation. Two further groups in part B (5 participants per group), not included in the main safety and immunological analysis, received HD-MAPs delivering 15 µg HA or uncoated HD-MAPs applied to the forearm. Biopsies were taken on days 1 and 4 for analysis of the cellular composition from the HD-MAP application sites. The vaccine coated onto HD-MAPs was antigenically stable when stored at 40°C for at least 12 months. HD-MAP vaccination was safe and well tolerated; any systemic or local adverse events (AEs) were mild or moderate. Observed systemic AEs were mostly headache or myalgia, and local AEs were application-site reactions, usually erythema. HD-MAP administration of 2.5 µg HA induced haemagglutination inhibition (HAI) and microneutralisation (MN) titres that were not significantly different to those induced by 15 µg HA injected IM (IM-QIV-15). HD-MAP delivery resulted in enhanced humoral responses compared with IM injection with higher HAI geometric mean titres (GMTs) at day 8 in the MAP-UA-15 (GMT 242.5, 95% CI 133.2-441.5), MAP-FA-15 (GMT 218.6, 95% CI 111.9-427.0), and MAP-FA-10 (GMT 437.1, 95% CI 254.3-751.3) groups compared with IM-QIV-15 (GMT 82.8, 95% CI 42.4-161.8), p = 0.02, p = 0.04, p < 0.001 for MAP-UA-15, MAP-FA-15, and MAP-FA-10, respectively. Higher titres were also observed at day 22 in the MAP-FA-10 (GMT 485.0, 95% CI 301.5-780.2, p = 0.001) and MAP-UA-15 (367.6, 95% CI 197.9-682.7, p = 0.02) groups compared with the IM-QIV-15 group (GMT 139.3, 95% CI 79.3-244.5). Results from a panel of exploratory immunoassays (antibody-dependent cellular cytotoxicity, CD4+ T-cell cytokine production, memory B cell (MBC) activation, and recognition of non-vaccine strains) indicated that, overall, Vaxxas HD-MAP delivery induced immune responses that were similar to, or higher than, those induced by IM injection of QIV. The small group sizes and use of a monovalent influenza vaccine were limitations of the study. CONCLUSIONS: Influenza vaccine coated onto the HD-MAP was stable stored at temperatures up to 40°C. Vaccination using the HD-MAP was safe and well tolerated and resulted in immune responses that were similar to or significantly enhanced compared with IM injection. Using the HD-MAP, a 2.5 µg dose (1/6 of the standard dose) induced HAI and MN titres similar to those induced by 15 µg HA injected IM. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR.org.au), trial ID 108 ACTRN12618000112268/U1111-1207-3550.


Assuntos
Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinação , Administração Cutânea , Adolescente , Adulto , Anticorpos Antivirais/sangue , Austrália , Células Cultivadas , Estabilidade de Medicamentos , Feminino , Humanos , Imunoglobulina A/metabolismo , Vacinas contra Influenza/efeitos adversos , Influenza Humana/imunologia , Influenza Humana/virologia , Injeções Intramusculares , Masculino , Saliva/imunologia , Saliva/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Fatores de Tempo , Adesivo Transdérmico , Resultado do Tratamento , Vacinação/efeitos adversos , Adulto Jovem
10.
Vaccines (Basel) ; 7(4)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756967

RESUMO

Dengue virus is the most important arbovirus impacting global human health, with an estimated 390 million infections annually, and over half the world's population at risk of infection. While significant efforts have been made to develop effective vaccines to mitigate this threat, the task has proven extremely challenging, with new approaches continually being sought. The majority of protective, neutralizing antibodies induced during infection are targeted by the envelope (E) protein, making it an ideal candidate for a subunit vaccine approach. Using truncated, recombinant, secreted E proteins (sE) of all 4 dengue virus serotypes, we have assessed their immunogenicity and protective efficacy in mice, with or without Quil-A as an adjuvant, and delivered via micropatch array (MPA) to the skin in comparison with more traditional routes of immunization. The micropatch contains an ultra-high density array (21,000/cm2) of 110 µm microprojections. Mice received 3 doses of 1 µg (nanopatch, intradermal, subcutaneous, or intra muscular injection) or 10 µg (intradermal, subcutaneous, or intra muscular injection) of tetravalent sE spaced 4 weeks apart. When adjuvanted with Quil-A, tetravalent sE vaccination delivered via MPA resulted in earlier induction of virus-neutralizing IgG antibodies for all four serotypes when compared with all of the other vaccination routes. Using the infectious dengue virus AG129 mouse infectious dengue model, these neutralizing antibodies protected all mice from lethal dengue virus type 2 D220 challenge, with protected animals showing no signs of disease or circulating virus. If these results can be translated to humans, MPA-delivered sE represents a promising approach to dengue virus vaccination.

11.
NPJ Vaccines ; 4: 41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632742

RESUMO

Chemical adjuvants are typically used to improve immune responses induced by immunisation with protein antigens. Here we demonstrate an approach to enhance immune responses that does not require chemical adjuvants. We applied microprojection arrays to the skin, producing a range of controlled mechanical energy to invoke localised inflammation, while administering influenza split virus protein antigen. We used validated computational modelling methods to identify links between mechanical stress and energy generated within the skin strata and resultant cell death. We compared induced immune responses to those induced by needle-based intradermal antigen delivery and used a systems biology approach to examine the nature of the induced inflammatory response, and correlated this with markers of cell stress and death. Increasing the microprojection array application energy and the addition of QS-21 adjuvant were each associated with enhanced antibody response to delivered antigen and with induction of gene transcriptions associated with TNF and NF-κB signalling pathways. We concluded that microprojection intradermal antigen delivery inducing controlled local cell death could potentially replace chemical adjuvants to enhance the immune response to protein antigen.

12.
Gynecol Obstet Fertil Senol ; 47(10): 713-717, 2019 10.
Artigo em Francês | MEDLINE | ID: mdl-31356891

RESUMO

OBJECTIVES: Acute Bartholinitis is a common pathology affecting nearly 2% of women in their lifetime. Many treatments are used, although their effectiveness is not demonstrated in the literature. The main objective was to evaluate the success rate of first-line antibiotic therapy. The secondary objective was to identify factors associated with successful treatment. METHODS: We conducted a retrospective unicentric study between January 2014 and June 2018 at the University Hospital Center of Nancy. Inclusion criteria were the presence of acute bartholinitis treated with first-line antibiotic therapy. Exclusion criteria were patients lost to follow-up after initiation of treatment. The primary endpoint was the absence of surgical treatment within 30 days of initiation of antibiotic therapy. Factors associated with successful medical treatment were sought. RESULTS: Thirty-three patients were included. The success rate of medical treatment was 48.5% at 30 days. In the case of symptoms that had been evolving for less than 3 days, the success of medical treatment was more frequent (75% vs. 35.3%, P=0.02). Medical treatment was more effective in lesions of less than 2cm (68.7% vs. 23.5%, P=0.01). After adjustment, the only factor associated with successful medical treatment was lesion size≤2cm [ORa=5.31 (1.05-26.81)]. CONCLUSION: First-line antibiotic therapy for acute bartholinitis seems effective but should be targeted according to certain eligibility criteria.


Assuntos
Antibacterianos/uso terapêutico , Glândulas Vestibulares Maiores , Vulvite/tratamento farmacológico , Doença Aguda , Adulto , Feminino , França , Humanos , Estudos Retrospectivos
13.
J Thromb Haemost ; 16(9): 1830-1842, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29978544

RESUMO

Essentials Risk factors of bleeding in adult immune thrombocytopenia are not known. This multicenter study assessed risk factors of bleeding at immune thrombocytopenia onset. Platelet count thresholds associated with bleeding were < 20 × 109 L-1 and < 10 × 109 L-1 . Exposure to anticoagulants was a major risk factor of severe bleeding. SUMMARY: Background The aim of this cross-sectional study was to assess risk factors for bleeding in immune thrombocytopenia (ITP) adults, including the determination of platelet count thresholds. Methods We selected all newly diagnosed ITP adults included in the Cytopénies Auto-immunes Registre Midi-PyrénéEN (CARMEN) register and at the French referral center for autoimmune cytopenias. The frequencies of any bleeding, mucosal bleeding and severe bleeding (gastrointestinal, intracranial, or macroscopic hematuria) at ITP onset were assessed. Platelet count thresholds were assessed by the use of receiver operating characteristic curves. All potential risk factors were included in logistic regression models. Results Among the 302 patients, the frequencies of any, mucosal and severe bleeding were 57.9%, 30.1%, and 6.6%, respectively. The best discriminant threshold of platelet count for any bleeding was 20 × 109 L-1 . In multivariate analysis, factors associated with any bleeding were platelet count (< 10 × 109 L-1 versus ≥ 20 × 109 L-1 , odds ratio [OR] 48.2, 95% confidence interval [CI] 20.0-116.3; between 10 × 109 L-1 and 19 × 109 L-1 versus ≥ 20 × 109 L-1 , OR 5.2, 95% CI 2.3-11.6), female sex (OR 2.6, 95% CI 1.3-5.0), and exposure to non-steroidal anti-inflammatory drugs (NSAIDs) (OR 4.8, 95% CI 1.1-20.7). A low platelet count was also the main risk factor for mucosal bleeding. Exposure to anticoagulant drugs was associated with severe bleeding (OR 4.3, 95% CI 1.3-14.1). Conclusions Platelet counts of < 20 × 109 L-1 and < 10 × 109 L-1 were thresholds for major increased risks of any and mucosal bleeding. Platelet count, female sex and exposure to NSAIDs should be considered for assessment of the risk of any bleeding. Exposure to anticoagulant drugs was a major risk factor for severe bleeding.


Assuntos
Hemorragia/etiologia , Contagem de Plaquetas , Púrpura Trombocitopênica Idiopática/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anticoagulantes/efeitos adversos , Área Sob a Curva , Comorbidade , Estudos Transversais , Feminino , Hemorragia/induzido quimicamente , Hemorragia/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Púrpura Trombocitopênica Idiopática/complicações , Púrpura Trombocitopênica Idiopática/diagnóstico , Curva ROC , Fatores de Risco , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Índice de Gravidade de Doença
14.
Vaccine ; 36(26): 3779-3788, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29779922

RESUMO

BACKGROUND: Injection using needle and syringe (N&S) is the most widely used method for vaccination, but requires trained healthcare workers. Fear of needles, risk of needle-stick injury, and the need to reconstitute lyophilised vaccines, are also drawbacks. The Nanopatch (NP) is a microarray skin patch comprised of a high-density array of microprojections dry-coated with vaccine that is being developed to address these shortcomings. Here we report a randomised, partly-blinded, placebo-controlled trial that represents the first use in humans of the NP to deliver a vaccine. METHODS: Healthy volunteers were vaccinated once with one of the following: (1) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg haemagglutinin (HA) per dose), applied to the volar forearm (NP-HA/FA), n = 15; (2) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg HA per dose), applied to the upper arm (NP-HA/UA), n = 15; (3) Fluvax® 2016 containing 15 µg of the same H1N1 HA antigen injected intramuscularly (IM) into the deltoid (IM-HA/D), n = 15; (4) NPs coated with excipients only, applied to the volar forearm (NP-placebo/FA), n = 5; (5) NPs coated with excipients only applied to the upper arm (NP-placebo/UA), n = 5; or (6) Saline injected IM into the deltoid (IM-placebo/D), n = 5. Antibody responses at days 0, 7, and 21 were measured by haemagglutination inhibition (HAI) and microneutralisation (MN) assays. FINDINGS: NP vaccination was safe and acceptable; all adverse events were mild or moderate. Most subjects (55%) receiving patch vaccinations (HA or placebo) preferred the NP compared with their past experience of IM injection with N&S (preferred by 24%). The antigen-vaccinated groups had statistically higher HAI titres at day 7 and 21 compared with baseline (p < 0.0001), with no statistical differences between the treatment groups (p > 0.05), although the group sizes were small. The geometric mean HAI titres at day 21 for the NP-HA/FA, NP-HA/UA and IM-HA/D groups were: 335 (189-593 95% CI), 160 (74-345 95% CI), and 221 (129-380 95% CI) respectively. A similar pattern of responses was seen with the MN assays. Application site reactions were mild or moderate, and more marked with the influenza vaccine NPs than with the placebo or IM injection. INTERPRETATION: Influenza vaccination using the NP appeared to be safe, and acceptable in this first time in humans study, and induced similar immune responses to vaccination by IM injection.


Assuntos
Administração Cutânea , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Adolescente , Adulto , Anticorpos Antivirais/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Voluntários Saudáveis , Testes de Inibição da Hemaglutinação , Humanos , Vacinas contra Influenza/efeitos adversos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Aceitação pelo Paciente de Cuidados de Saúde , Placebos/administração & dosagem , Método Simples-Cego , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
15.
Sci Rep ; 7(1): 12644, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974777

RESUMO

To secure a polio-free world, the live attenuated oral poliovirus vaccine (OPV) will eventually need to be replaced with inactivated poliovirus vaccines (IPV). However, current IPV delivery is less suitable for campaign use than OPV, and more expensive. We are progressing a microarray patch delivery platform, the Nanopatch, as an easy-to-use device to administer vaccines, including IPV. The Nanopatch contains an ultra-high density array (10,000/cm2) of short (~230 µm) microprojections that delivers dry coated vaccine into the skin. Here, we compare the relative immunogenicity of Nanopatch immunisation versus intramuscular injection in rats, using monovalent and trivalent formulations of IPV. Nanopatch delivery elicits faster antibody response kinetics, with high titres of neutralising antibody after just one (IPV2) or two (IPV1 and IPV3) immunisations, while IM injection requires two (IPV2) or three (IPV1 and IPV3) immunisations to induce similar responses. Seroconversion to each poliovirus type was seen in 100% of rats that received ~1/40th of a human dose of IPV delivered by Nanopatch, but not in rats given ~1/8th or ~1/40th dose by IM injection. Ease of administration coupled with dose reduction observed in this study suggests the Nanopatch could facilitate inexpensive IPV vaccination in campaign settings.


Assuntos
Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/imunologia , Animais , Anticorpos Antivirais/imunologia , Humanos , Poliomielite/imunologia , Poliomielite/virologia , Poliovirus/imunologia , Poliovirus/patogenicidade , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacina Antipólio Oral/administração & dosagem , Ratos , Pele/efeitos dos fármacos , Pele/imunologia , Vacinação
16.
Sci Rep ; 7(1): 2014, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515435

RESUMO

Scale insects (Sternorrhyncha: Coccoidea) are one of the most invasive and agriculturally damaging insect groups. Their management and the development of new control methods are currently jeopardized by the scarcity of identification data, in particular in regions where no large survey coupling morphological and DNA analyses have been performed. In this study, we sampled 116 populations of armored scales (Hemiptera: Diaspididae) and 112 populations of soft scales (Hemiptera: Coccidae) in Chile, over a latitudinal gradient ranging from 18°S to 41°S, on fruit crops, ornamental plants and trees. We sequenced the COI and 28S genes in each population. In total, 19 Diaspididae species and 11 Coccidae species were identified morphologically. From the 63 COI haplotypes and the 54 28S haplotypes uncovered, and using several DNA data analysis methods (Automatic Barcode Gap Discovery, K2P distance, NJ trees), up to 36 genetic clusters were detected. Morphological and DNA data were congruent, except for three species (Aspidiotus nerii, Hemiberlesia rapax and Coccus hesperidum) in which DNA data revealed highly differentiated lineages. More than 50% of the haplotypes obtained had no high-scoring matches with any of the sequences in the GenBank database. This study provides 63 COI and 54 28S barcode sequences for the identification of Coccoidea from Chile.


Assuntos
Variação Genética , Hemípteros/genética , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Mitocondriais , Haplótipos , Hemípteros/classificação , Filogenia
17.
Med Mal Infect ; 47(5): 324-332, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28550938

RESUMO

INTRODUCTION: French national guidelines state that antibiotic therapies should be reassessed between 48 and 72hours after treatment initiation and that reassessment of antibiotic therapy (RA) must be recorded in patients' files. OBJECTIVE: To determine whether RA is performed and recorded in patients' files in hospitals in a region of France. METHODS: Setting: hospitals participating in the National nosocomial infection point- prevalence survey (NPS) in Upper-Normandy, France. Patients included those receiving antibiotic therapy (excluding antibiotic prophylaxis) on NPS day, started in the hospital in which the survey was conducted and ongoing for more than 72hours. Data collected included characteristics of participating hospitals and, for each included patient, characteristics of ward, infection and antibiotic therapy, and mention in the patients' files of explicit or implicit RA. The rate of explicit and implicit RA was calculated and factors associated with explicit or implicit RA were evaluated using a univariate analysis. RESULTS: Thirty-three hospitals representing 87% of hospital beds region-wide were included in the study. In addition, 933 prescriptions were assessed for 724 infections in 676 patients. The overall rate of RA was 67.6% (49.3% of explicit RA and 18.3% of implicit RA). The rate of RA differed significantly according to infection and antibiotic class but not according to hospital or ward characteristics. CONCLUSION: Our study provides new and reassuring results regarding reassessment of antibiotic therapy.


Assuntos
Antibacterianos/uso terapêutico , Gestão de Antimicrobianos/normas , Hospitais , França , Humanos , Fatores de Tempo
18.
Sci Rep ; 6: 29368, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27404789

RESUMO

Adjuvants play a key role in boosting immunogenicity of vaccines, particularly for subunit protein vaccines. In this study we investigated the induction of antibody response against trivalent influenza subunit protein antigen and a saponin adjuvant, QS-21. Clinical trials of QS-21 have demonstrated the safety but, also a need of high dose for optimal immunity, which could possibly reduce patient acceptability. Here, we proposed the use of a skin delivery technology - the Nanopatch - to reduce both adjuvant and antigen dose but also retain its immune stimulating effects when compared to the conventional needle and syringe intramuscular (IM) delivery. We have demonstrated that Nanopatch delivery to skin requires only 1/100(th) of the IM antigen dose to induce equivalent humoral response. QS-21 enhanced humoral response in both skin and muscle route. Additionally, Nanopatch has demonstrated 30-fold adjuvant QS-21 dose sparing while retaining immune stimulating effects compared to IM. QS-21 induced localised, controlled cell death in the skin, suggesting that the danger signals released from dead cells contributed to the enhanced immunogenicity. Taken together, these findings demonstrated the suitability of reduced dose of QS-21 and the antigen using the Nanopatch to enhance humoral responses, and the potential to increase patient acceptability of QS-21 adjuvant.


Assuntos
Adjuvantes Imunológicos/farmacologia , Saponinas/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Administração Tópica , Animais , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Saponinas/administração & dosagem , Pele/citologia , Pele/efeitos dos fármacos , Células Th1/imunologia , Células Th2/imunologia
19.
Neotrop Entomol ; 45(6): 692-697, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27389187

RESUMO

The worldwide mealybug genus Paracoccus Ezzat & McConnell (Hemiptera: Coccomorpha: Pseudococcidae) has eight described Neotropical species, including two species known from Brazil. In this article, we describe a third species from Brazil: Paracoccus galzerae Pacheco da Silva & Kaydan sp. n., based on the morphology of adult females collected on the roots of Conyza bonariensis (Asteraceae) in vineyards in Bento Gonçalves City, Rio Grande do Sul. A revised identification key including the new species is provided for the Neotropical region.


Assuntos
Hemípteros/classificação , Animais , Asteraceae , Brasil , Feminino , Paracoccus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...