Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Chem ; 62(1): 4-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37927097

RESUMO

Externally calibrated quantitative nuclear magnetic resonance (NMR) approaches offer practical means to simultaneously evaluate chemical identity and content without the addition of calibrants to the test sample. Despite continuous advances in external calibration over the last few decades, adoption of these approaches has been slower than expected. Variations in NMR tube geometry are a commonly overlooked factor that can have a substantial effect on externally calibrated quantitation methods. In this report, we investigate the extent to which tube-to-tube volume variability can affect quantitative NMR outcomes. The results highlight the importance of considering tube quality during the development stages of externally calibrated quantitative methods. In addition, we propose a simple, yet effective volume correction strategy using the residual protonated solvent signal that, based on experiments with mixed NMR tubes of varying quality, alleviates the effect of tube-to-tube variability.

2.
J Fluoresc ; 31(4): 961-969, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33821437

RESUMO

Sila- and germafluorenes containing alkynyl(aryl) substituents at the 2,7- position are strongly emissive with high quantum yields in organic solvents. Provided they are sufficiently soluble in water, their hydrophobic structures have the potential for many biological and industrial applications in the detection and characterization of lipophilic structures. To that end, the emission behaviors of previously synthesized 2,7- bis[alkynyl(biphenyl)]-9,9-diphenylsilafluorene (1), 2,7- bis[alkynyl(methoxynaphthyl)]-9,9-diphenylgermafluorene (2), 2,7- bis[alkynyl(p-tolyl)]-9,9-diphenylsilafluorene (3), and 2,7- bis[alkynyl(m-fluorophenyl)]-9,9-diphenylsilafluorene (4) were characterized in aqueous solution and in the presence of various surfactants. Despite a high degree of hydrophobicity, all of these metallafluorenes (MFs) are soluble in aqueous solution at low micromolar concentrations and luminesce in a common aqueous buffer. Further, the 2,7 substituent makes the emission behavior tunable (up to 30 nm). Fold emission enhancements in the presence of various surfactants are highest toward Triton X-100 and CTAB (ranging from 5 to 25 fold) and are lowest for the anionic surfactants SDS and SDBS. These enhancements are competitive with existing probes of surfactants. Quantum yields in buffer range from 0.11 to 0.34, competitive with many common fluorophores in biological use. Strikingly, MF quantum yields in the presence of TX-100 and CTAB approach 100 % quantum efficiency. MF anisotropies are dramatically increased only in the presence of TX-100, CTAB, and CHAPS. Coupled with the above data, this suggests that MFs associate with neutral and charged surfactant aggregates. Interactions with the anionic surfactants are weaker and/or leave MFs solvent exposed. These properties make metallafluorenes competitive probes for surfactants and their properties and behaviors, and thus could also have important biological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...