Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 14(2): 131-45, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10872505

RESUMO

The MDR1 multidrug resistance gene encodes a high molecular weight membrane-spanning cell surface protein, P-glycoprotein, that confers multidrug resistance by pumping various cytotoxic drugs, including vinblastine, doxorubicin or paclitaxel, out of cells. Overexpression of P-glycoprotein in human tumors has been recognized as a major obstacle for successful chemotherapy of cancer. Thus, P-glycoprotein represents an important drug target for pharmacological chemosensitizers. Initially, cell culture models to study the multidrug resistance phenotype were established by selecting drug-sensitive cells in step-wise increasing, sublethal concentrations of chemotherapy agents. P-glycoprotein was found to be overexpressed in many of these models. Multidrug resistant cells can also be generated by transfection of cultured cells with the MDR1 gene, followed by selection with cytotoxic drug at a concentration that kills all untransfected host cells. Transfectants expressing wild-type or mutant recombinant P-glycoprotein have significantly contributed to our understanding of the structure of P-glycoprotein and its molecular and cellular functions. Additionally, the MDR1 gene has also been used as a selectable marker for the transfer and coexpression of non-selectable genes. This article details means for detection of P-glycoprotein in DNA-transfected or retrovirally transduced, cultured cells. Different experimental approaches are described that make use of specific antibodies for detection of P-glycoprotein. Strategies to visualize P-glycoprotein include metabolic labeling using 35S-methionine, labeling with a radioactive photoaffinity analog, and non-radioactive immunostaining after Western blotting.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/imunologia , Animais , Anticorpos/imunologia , Western Blotting , Humanos , Camundongos , Testes de Precipitina , Proteínas Recombinantes/análise , Células Tumorais Cultivadas
2.
Biochemistry ; 38(42): 13887-99, 1999 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-10529234

RESUMO

Human P-glycoprotein (P-gp) is a cell surface drug efflux pump that contains two nucleotide binding domains (NBDs). Mutations were made in each of the Walker B consensus motifs of the NBDs at positions D555N and D1200N, thought to be involved in Mg(2+) binding. Although the mutant and wild-type P-gps were expressed equivalently at the cell surface and bound the drug analogue [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) comparably, neither of the mutant proteins was able to transport fluorescent substrates nor had detectable basal nor drug-stimulated ATPase activities. The wild-type and D1200N P-gps were labeled comparably with [alpha-(32)P]-8-azido-ATP at a subsaturating concentration of 2.5 microM, whereas labeling of the D555N mutant was severely impaired. Mild trypsin digestion, to cleave the protein into two halves, demonstrated that the N-half of the wild-type and D1200N proteins was labeled preferentially with [alpha-(32)P]-8-azido-ATP. [alpha-(32)P]-8-Azido-ATP labeling at 4 degrees C was inhibited in a concentration-dependent manner by ATP with half-maximal inhibition at approximately 10-20 microM for the P-gp-D1200N mutant and wild-type P-gp. A chimeric protein containing two N-half NBDs was found to be functional for transport and was also asymmetric with respect to [alpha-(32)P]-8-azido-ATP labeling, suggesting that the context of the ATP site rather than its exact sequence is an important determinant for ATP binding. By use of [alpha-(32)P]-8-azido-ATP and vanadate trapping, it was determined that the C-half of wild-type P-gp was labeled preferentially under hydrolysis conditions; however, the N-half was still capable of being labeled with [alpha-(32)P]-8-azido-ATP. Neither mutant was labeled under vanadate trapping conditions, indicating loss of ATP hydrolysis activity in the mutants. In confirmation of the lack of ATP hydrolysis, no inhibition of [(125)I]IAAP labeling was observed in the mutants in the presence of vanadate. Taken together, these data suggest that the two NBDs are asymmetric and intimately linked and that a conformational change in the protein may occur upon ATP hydrolysis. Furthermore, these data are consistent with a model in which binding of ATP to one site affects ATP hydrolysis at the second site.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/imunologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Motivos de Aminoácidos/efeitos dos fármacos , Motivos de Aminoácidos/genética , Substituição de Aminoácidos/genética , Anticorpos Monoclonais/metabolismo , Asparagina/genética , Ácido Aspártico/genética , Azidas/antagonistas & inibidores , Azidas/metabolismo , Sítios de Ligação/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Temperatura Corporal , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Sequência Consenso/efeitos dos fármacos , Sequência Consenso/genética , Ativação Enzimática/efeitos dos fármacos , Congelamento , Células HeLa , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Radioisótopos de Fósforo/metabolismo , Marcadores de Fotoafinidade/metabolismo , Mutação Puntual , Prazosina/análogos & derivados , Prazosina/antagonistas & inibidores , Prazosina/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vanadatos/farmacologia , Verapamil/farmacologia
3.
Curr Med Chem ; 6(9): 807-23, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10495353

RESUMO

p38 MAP kinase is a member of the family of kinases which mediate intracellular transduction pathways. The activation of this particular MAP kinase pathway is in response to a broad variety of extracellular stimuli. Subsequent downstream events triggered by p38 activation result in the production of IL-1 and TNF-a, suggesting that inhibition of this enzyme may provide a useful therapeutic target for intervention in various diseases mediated by these cytokines. Understanding the biological consequences of p38 activation and inhibition has been the subject of intensive research over the past several years and there is now ample evidence to suggest that inhibition of this enzyme represents a valid approach for target intervention in various cytokine-mediated diseases. Crystal structures of both apo enzyme and enzyme bound to various ligands in conjunction with site specific mutagenesis studies have provided a wealth of information regarding the interactions necessary to result in potent inhibition and selectivity from other kinases. This information has proven useful towards the analysis of previously reported compounds and will provide additional insight towards the design of new compounds and building upon existing SAR.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/uso terapêutico , Proteínas Quinases Ativadas por Mitógeno , Sequência de Aminoácidos , Anti-Inflamatórios/uso terapêutico , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/imunologia , Doenças Cardiovasculares/tratamento farmacológico , Inibidores Enzimáticos/química , Humanos , Imidazóis/química , Imidazóis/uso terapêutico , Concentração Inibidora 50 , Interleucina-1/biossíntese , Dados de Sequência Molecular , Piridinas/química , Piridinas/uso terapêutico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Protein Sci ; 7(11): 2249-55, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9827991

RESUMO

Mitogen-activated protein (MAP) kinases are serine/threonine kinases that mediate intracellular signal transduction pathways. Pyridinyl imidazole compounds block pro-inflammatory cytokine production and are specific p38 kinase inhibitors. ERK2 is related to p38 in sequence and structure, but is not inhibited by pyridinyl imidazole inhibitors. Crystal structures of two pyridinyl imidazoles complexed with p38 revealed these compounds bind in the ATP site. Mutagenesis data suggested a single residue difference at threonine 106 between p38 and other MAP kinases is sufficient to confer selectivity of pyridinyl imidazoles. We have changed the equivalent residue in human ERK2, Q105, into threonine and alanine, and substituted four additional ATP binding site residues. The single residue change Q105A in ERK2 enhances the binding of SB202190 at least 25,000-fold compared to wild-type ERK2. We report enzymatic analyses of wild-type ERK2 and the mutant proteins, and the crystal structure of a pyridinyl imidazole, SB203580, bound to an ERK2 pentamutant, I103L, Q105T, D106H, E109G. T110A. These ATP binding site substitutions induce low nanomolar sensitivity to pyridinyl imidazoles. Furthermore, we identified 5-iodotubercidin as a potent ERK2 inhibitor, which may help reveal the role of ERK2 in cell proliferation.


Assuntos
Substituição de Aminoácidos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Proteínas Quinases Ativadas por Mitógeno , Piridinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Cristalização , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Imidazóis/química , Camundongos , Proteína Quinase 1 Ativada por Mitógeno , Modelos Moleculares , Mutagênese , Fosforilação , Piridinas/química , Relação Estrutura-Atividade , Tubercidina/análogos & derivados , Tubercidina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
5.
Biochemistry ; 37(39): 13660-73, 1998 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-9753453

RESUMO

P-Glycoprotein (Pgp), an energy-dependent drug efflux pump responsible for multidrug resistance of many cancer cells, is comprised of two homologous halves connected by a peptide segment approximately 75 amino acids (aa) in length. The effects of length and composition of this connecting region on Pgp cell surface expression and the ability of the two halves to interact were explored using both stable transfections of Pgp mutants in mammalian cell lines and a vaccinia virus transient expression system. A 17 aa insertion of predicted flexible structure between amino acids 681 and 682 resulted in a functional Pgp molecule that was capable of conferring drug resistance. In contrast, an 18 aa peptide insertion with a predicted alpha-helical structure was unstable when expressed transiently. A 34 aa deletion from the central core of the linker region (Delta653-686) resulted in a protein expressed at the cell surface in amounts comparable to that of wild-type Pgp but unable to confer drug resistance. No apparent differences in drug or [alpha-32P]-8-azido-ATP photoaffinity labeling were observed. However, both ATP hydrolysis and drug transport activities of the deletion mutant were completely abrogated, indicating that the linker deletion disconnected substrate binding from ATP hydrolysis and transport. This mutant also failed to exhibit an ATP hydrolysis-dependent enhancement of binding of a conformation-sensitive monoclonal antibody, UIC2. Upon replacement with a 17 aa linker peptide having a predicted flexible secondary structure, but bearing no homology to the deleted 34 aa segment, normal Pgp transport and basal and drug-stimulated ATPase activities were restored along with increased UIC2 binding in the presence of substrate, suggesting a dramatic conformational change between the nonfunctional and functional molecules. Taken together, these data suggest a flexible secondary structure of the connector region is sufficient for the coordinate functioning of the two halves of Pgp, likely specifically required for the proper interaction of the two ATP binding sites.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Resistência a Múltiplos Medicamentos , Células 3T3 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Adenosina Trifosfatases/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Azidas/metabolismo , Sequência de Bases , Transporte Biológico/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Resistência a Múltiplos Medicamentos/genética , Vetores Genéticos , Células HeLa , Humanos , Hidrólise , Radioisótopos do Iodo , Camundongos , Dados de Sequência Molecular , Mutagênese Insercional , Osteossarcoma , Fragmentos de Peptídeos/genética , Prazosina/análogos & derivados , Prazosina/metabolismo , Ligação Proteica/genética , Conformação Proteica , Proteínas Recombinantes/biossíntese , Deleção de Sequência , Células Tumorais Cultivadas , Verapamil/farmacologia
7.
Cytotechnology ; 27(1-3): 31-60, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19002782

RESUMO

Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity.

8.
Anticancer Drugs ; 8(2): 125-40, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9073309

RESUMO

VX-710 or (S)-N[2-Oxo-2-(3,4,5-trimethoxyphenyl)acetyl]-piperidine-2-carboxylic acid 1,7-bis(3-pyridyl)-4-heptyl ester, a novel non-macrocyclic ligand of the FK506-binding protein FKBP12, was evaluated for its ability to reverse P-glycoprotein-mediated multidrug resistance in vitro. VX-710 at 0.5-5 microM restored sensitivity of a variety of multidrug resistant cells to the cytotoxic action of doxorubicin, vincristine, etoposide or paclitaxel, including drug-selected human myeloma and epithelial carcinoma cells, and human MDR1 cDNA-transfected mouse leukemia and fibroblast cells. Uptake experiments showed that VX-710 at 0.5-2.5 microM fully restored intracellular accumulation of [14C]doxorubicin in multidrug resistant cells, suggesting that VX-710 inhibits the drug efflux activity of P-glycoprotein. VX-710 effectively inhibited photoaffinity labeling of P-glycoprotein by [3H]azidopine or [125I]iodoaryl azidoprazosin with EC50 values of 0.75 and 0.55 microM. Moreover, P-glycoprotein was specifically labeled by a tritiated photoaffinity analog of VX-710 and unlabeled VX-710 inhibited analog binding with an EC50 of 0.75 microM. VX-710 also stimulated the vanadate-inhibitable P-glycoprotein ATPase activity 2- to 3-fold in a concentration-dependent manner with an apparent k(a) of 0.1 microM. These data indicate that a direct, high-affinity interaction of VX-710 with P-glycoprotein prevents efflux of cytotoxic drugs by the MDR1 gene product in multidrug resistant tumor cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/fisiologia , Piperidinas/farmacologia , Piridinas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Marcadores de Afinidade , Animais , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Etoposídeo/farmacologia , Proteínas de Choque Térmico/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Paclitaxel/farmacologia , Proteínas de Ligação a Tacrolimo , Transfecção , Células Tumorais Cultivadas , Vincristina/farmacologia
9.
Anticancer Drugs ; 8(2): 141-55, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9073310

RESUMO

Overexpression of the multidrug resistance MDR1 gene product P-glycoprotein and/or the multidrug resistance-associated protein MRP confers multidrug resistance to cancer cells. The pipecolinate derivative VX-710 has previously been demonstrated to reverse MDR1-mediated multidrug resistance at concentrations of 0.5-2.5 microM by direct interaction with P-glycoprotein and inhibition of its drug efflux activity. In this study we investigated whether VX-710 as well as four other known MDR1 modulators could also reverse multidrug resistance mediated by MRP. VX-710 at 0.5-5 microM restored senstivity of MRP-expressing HL60/ADR promyelocytic leukemia cells to the cytotoxic action of doxorubicin, etoposide and vincristine. VX-710 was approximately 2-fold more effective than verapamil, MS-209 and CsA in modulating MRP-mediated multidrug resistance, whereas GF120918 had no significant effect. VX-710 was also more effective than verapamil, MS-209 and CsA in restoring the daunorubicin accumulation deficit in HL60/ADR cells and in increasing calcein uptake. A photoaffinity analog of VX-710, [3H]VF-13,159, specifically photo labeled the MRP protein and unlabeled VX-710 inhibited this binding in a concentration-dependent manner. These data suggest that VX-710 is not only a potent modulator of P-glycoprotein-mediated multidrug resistance, but also affects multidrug resistance in MRP-expressing cells and may exert its action, at least in part, by binding directly to MRP.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos , Células HL-60/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Tetra-Hidroisoquinolinas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Acridinas/farmacologia , Marcadores de Afinidade , Ciclosporina/farmacologia , Daunorrubicina/farmacologia , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Etoposídeo/farmacologia , Fluoresceínas/farmacocinética , Células HL-60/metabolismo , Humanos , Isoquinolinas/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Piperidinas/química , Piridinas/química , Quinolinas/farmacologia , Trítio , Verapamil/farmacologia , Vincristina/farmacologia
12.
Cytokines Mol Ther ; 2(1): 47-57, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9384689

RESUMO

Gene fusions can be employed to ensure concomitant expression of two different proteins under the same transcriptional control elements. We have synthesized a retroviral expression vector (pHaMG1) containing a human multidrug resistance (MDR1)-glucocerebrosidase (GC) chimeric gene inserted between the long terminal repeats of the Harvey murine sarcoma virus. When introduced into psi-CRE mouse fibroblasts, pHaMG1 conferred the drug-selectable multidrug resistance phenotype, and drug-resistant clones produced active human GC of about 60 kDa. Percoll gradient fractionation of homogenates prepared from transfectants confirmed correct targeting of P-glycoprotein to the plasma membrane and of GC to lysosomes. Although this construction was designed as a translational fusion of the MDR1 gene product, P-glycoprotein, and human GC, no evidence for a fusion protein was found in transfected cells, and an analysis of the RNAs transcribed from the integrated pHaMG1 retroviral vector suggests that either P-glycoprotein and GC are translated from one mRNA and rapidly processed into two proteins or they are translated separately from different mRNAs. These results reveal the feasibility of using fusion genes, which are smaller than alternative constructions with two promoters or with an internal ribosome entry site, for coexpression of selectable and nonselectable cDNAs in retroviral vectors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Endopeptidases , Glucosilceramidase/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Sequência de Aminoácidos , Animais , Fusão Gênica Artificial , Sequência de Bases , Catepsina L , Catepsinas/biossíntese , Linhagem Celular , Cisteína Endopeptidases , Genes MDR , Glucosilceramidase/genética , Humanos , Camundongos , Biossíntese de Proteínas , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica , Transfecção
13.
J Biol Chem ; 271(4): 1877-83, 1996 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-8567633

RESUMO

The characteristics of P-glycoprotein (MDR1), an ATP-dependent drug extrusion pump responsible for the multidrug resistance of human cancer, were investigated in an in vitro expression system. The wild-type and several mutants of the human MDR1 cDNA were engineered into recombinant baculoviruses and the mutant proteins were expressed in Sf9 insect cells. In isolated cell membrane preparations of the virus-infected cells the MDR1-dependent drug-stimulated ATPase activity, and 8-azido-ATP binding to the MDR1 protein were studied. We found that when lysines 433 and/or 1076 were replaced by methionines in the ATP-binding domains, all these mutations abolished drug-stimulated ATPase activity independent of the MgATP concentrations applied. Photoaffinity labeling with 8-azido-ATP showed that the double lysine mutant had a decreased ATP-binding affinity. In the MDR1 mutant containing a Gly185 to Val replacement we found no significant alteration in the maximum activity of the MDR1-ATPase or in its activation by verapamil and vinblastine, and this mutation did not modify the MgATP affinity or the 8-azido-ATP binding of the transporter either. However, the Gly185 to Val mutation significantly increased the stimulation of the MDR1-ATPase by colchicine and etoposide, while slightly decreasing its stimulation by vincristine. These shifts closely correspond to the effects of this mutation on the drug-resistance profile, as observed in tumor cells. These data indicate that the Sf9-baculovirus expression system for MDR1 provides an efficient tool for examining structure-function relationships and molecular characteristics of this clinically important enzyme.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/química , Marcadores de Afinidade , Animais , Sequência de Bases , Membrana Celular/metabolismo , Primers do DNA/química , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Spodoptera , Relação Estrutura-Atividade , Vanadatos/farmacologia
14.
J Biol Chem ; 271(3): 1708-16, 1996 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-8576173

RESUMO

To assess the role of phosphorylation of the human multidrug resistance MDR1 gene product P-glycoprotein for its drug transport activity, phosphorylation sites within its linker region were subjected to mutational analysis. We constructed a 5A mutant, in which serines at positions 661, 667, 671, 675, and 683 were replaced by nonphosphorylatable alanine residues, and a 5D mutant carrying aspartic acid residues at the respective positions to mimic permanently phosphorylated serine residues. Transfection studies revealed that both mutants were targeted properly to the cell surface and conferred multidrug resistance by diminishing drug accumulation. In contrast to wild-type P-glycoprotein, the overexpressed 5A and the 5D mutants exhibited no detectable levels of phosphorylation, either in vivo following metabolic labeling of cells with [32P]orthophosphate or in vitro in phosphorylation assays with protein kinase C, cAMP-dependent protein kinase, or a P-glyco-protein-specific protein kinase purified from multidrug-resistant KB-V1 cells. These results reconfirm that the major P-glycoprotein phosphorylation sites are located within the linker region. Furthermore, the first direct evidence is provided that phosphorylation/dephosphorylation mechanisms do not play an essential role in the establishment of the multidrug resistance phenotype mediated by human P-glycoprotein.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Mutagênese Sítio-Dirigida , Células 3T3 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/isolamento & purificação , Alanina , Sequência de Aminoácidos , Animais , Ácido Aspártico , Sequência de Bases , Membrana Celular/metabolismo , Análise Mutacional de DNA , Resistência a Múltiplos Medicamentos/genética , Expressão Gênica , Humanos , Mamíferos , Camundongos , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Fosforilação , Mutação Puntual , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Mapeamento por Restrição , Serina , Transfecção , Vincristina/farmacologia
16.
Biochemistry ; 34(43): 14156-62, 1995 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-7578013

RESUMO

Phosphorylation may play a role in modulating multidrug resistance by P-glycoprotein (P-gp). The linker region between the two homologous halves of human P-gp harbors several serine residues which are phosphorylated by protein kinase C (PKC) in vitro. We used the glutathione S-transferase gene fusion system to express and purify a series of fusion proteins containing the relevant portion (residues 644-689) of the linker region of the human MDR1 gene product. The fusion proteins were subjected to in vitro phosphorylation and phosphopeptide mapping analysis to identify specific phosphorylation sites. On the basis of a mutational strategy in which individual serine residues were systematically replaced with nonphosphorylatable alanine residues, Ser-661 and Ser-667 were identified as major PKC sites and Ser-683 was identified as a minor PKC site. Ser-661 and Ser-667 were also found to be the primary sites of phosphorylation for a novel membrane-associated P-gp specific kinase isolated from the multidrug-resistant KB-V1 cell line. Individual phosphorylation sites were recognized independently of each other. These data show that the linker region of P-gp represents a target for multisite phosphorylation not only for PKC but also for the P-gp specific V1 kinase. Specific serine phosphorylation sites are identified, and evidence is presented that the V1 kinase has a specificity which overlaps, but is more restricted than, that of PKC. In addition, these studies also suggest that the use of GST fusion peptides may be applicable for the analysis of multisite and ordered protein phosphorylation in other systems.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar , Escherichia coli , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mapeamento de Peptídeos , Fosfopeptídeos/química , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
17.
J Bioenerg Biomembr ; 27(1): 43-52, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7629051

RESUMO

Chemotherapy, though it remains one of the front-line weapons used to treat human cancer, is often ineffective due to drug resistance mechanisms manifest in tumor cells. One common pattern of drug resistance, characterized by simultaneous resistance to multiple amphipathic, but otherwise structurally dissimilar anticancer drugs, is termed multidrug resistance. Multidrug resistance in various model systems, covering the phylogenetic range from bacteria to man, can be conferred by mammalian P-glycoproteins (PGPs), often termed multidrug transporters. PGPs are 170-kD polytopic membrane proteins, predicted to consist of two homologous halves, each with six membrane spanning regions and one ATP binding site. They are members of the ATP-binding cassette (ABC) superfamily of transporters, and are known to function biochemically as energy-dependent drug efflux pumps. However, much remains to be learned about PGP structure-function relationships, membrane topology, posttranslational regulation, and bioenergetics of drug transport. Much of the recent progress in the study of the human and mouse PGPs has come from heterologous expression systems which offer the benefits of ease of genetic selection and manipulation, and/or short generation times of the organism in which PGPs are expressed, and/or high-level expression of recombinant PGP. Here we review recent studies of PGP in E. coli, baculovirus, and yeast systems and evaluate their utility for the study of PGPs, as well as other higher eukaryotic membrane proteins.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Clonagem Molecular/métodos , Transfecção/métodos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Baculoviridae , Bloqueadores dos Canais de Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Resistência a Múltiplos Medicamentos , Escherichia coli , Mamíferos , Modelos Estruturais , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Saccharomyces cerevisiae , Spodoptera
18.
J Bioenerg Biomembr ; 27(1): 53-61, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7629052

RESUMO

Cells expressing elevated levels of the membrane phosphoprotein P-glycoprotein exhibit a multidrug resistance phenotype. Studies involving protein kinase activators and inhibitors have implied that covalent modification of P-glycoprotein by phosphorylation may modulate its biological activity as a multidrug transporter. Most of these reagents, however, have additional mechanisms of action and may alter drug accumulation within multidrug resistant cells independent of, or in addition to, their effects on the state of phosphorylation of P-glycoprotein. The protein kinase(s) responsible for P-glycoprotein phosphorylation has(ve) not been unambiguously identified, although several possible candidates have been suggested. Recent biochemical analyses demonstrate that the major sites of phosphorylation are clustered within the linker region that connects the two homologous halves of P-glycoprotein. Mutational analyses have been initiated to confirm this finding. Preliminary data obtained from phosphorylation- and dephosphorylation-defective mutants suggest that phosphorylation of P-glycoprotein is not essential to confer multidrug resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Proteínas Quinases/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Análise Mutacional de DNA , Humanos , Modelos Estruturais , Dados de Sequência Molecular , Fosforilação , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
19.
Annu Rev Genet ; 29: 607-49, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-8825488

RESUMO

The analysis of how human cancers evade chemotherapy has revealed a rich variety of cell-based genetic changes resulting in drug resistance. One of the best studied of these genetic alterations is increased expression of an ATP-dependent plasma membrane transport system, known as P-glycoprotein, or the multidrug transporter. This transporter actively effluxes a large number of natural product, hydrophobic, cytotoxic drugs, including many important anticancer agents. This review focuses on the genetic and molecular genetic analysis of the human multidrug transporter, including structure-function analysis, pre- and posttranslational regulation of expression, the role of gene amplification in increased expression, and the properties of transgenic and "knock-out" mice. One important feature of the MDR gene is its potential for the development of new selectable vectors for human gene therapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos/genética , Animais , Animais Geneticamente Modificados , Amplificação de Genes , Regulação da Expressão Gênica , Marcadores Genéticos , Terapia Genética , Humanos , Mutação , Neoplasias/química , Neoplasias/genética , Neoplasias/terapia , Biossíntese de Proteínas , Conformação Proteica , Processamento de Proteína Pós-Traducional
20.
Genes Chromosomes Cancer ; 10(4): 267-74, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7522541

RESUMO

The physiologic expression of the human multidrug resistance MDR1 gene product P-glycoprotein is controlled in a tissue- and cell-specific manner, but the regulatory mechanisms have not been characterized in great detail. Studies by Kohno et al. [(1990) J Biol Chem 265:19690-19696] suggested that a tissue-specific enhancer element located approximately 10 kb upstream from the major MDR1 transcription start site may act to increase the levels of transcription in cultured adrenal and kidney cells. Using this putative "MDR enhancer" as a probe, we isolated a 14 kb DNA fragment from a genomic DNA library prepared from human fetal liver. The restriction map and partial nucleotide sequence of this DNA fragment were consistent with the previously described data obtained for a similar piece of genomic DNA derived from human placenta by Kohno et al. (ibid.). Pulsed-field gel electrophoresis of large genomic DNA fragments, however, showed that the DNA sequences, including the putative "MDR enhancer," were not linked to the MDR1 gene. Fluorescence in situ hybridization analysis revealed that this enhancer-like element is located on chromosome 20 at band q13.1 and is, therefore, distinct from the MDR locus on chromosome 7, band q21.1. Thus, this putative regulatory element does not modulate the tissue specificity of expression of the MDR1 gene in vivo, but may play a role in the regulation of expression of another, so far unknown gene.


Assuntos
Cromossomos Humanos Par 20 , Cromossomos Humanos Par 7 , Resistência a Múltiplos Medicamentos/genética , Elementos Facilitadores Genéticos/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Sequência de Bases , Ligação Genética , Humanos , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Mapeamento por Restrição , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...