Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(23): 8536-8547, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37264616

RESUMO

Geologic carbon storage currently implies that CO2 is injected into reservoirs more than 1 km deep, but this concept of geologic storage can be expanded to include the injection of solid, carbon-bearing particles into geologic formations that are one to two orders of magnitude shallower than conventional storage reservoirs. Wood is half carbon, available in large quantities at a modest cost, and can be milled into particles and injected as a slurry. We demonstrate the feasibility of shallow geologic storage of carbon by a field experiment, and the injection process also raises the ground surface. The resulting CO2 storage and ground uplift rates upscale to a technique that could contribute to the mitigation of climate change by storing carbon as well as helping to adapt to flooding risks by elevating the ground surface above flood levels. A life-cycle assessment indicates that CO2 emissions caused by shallow geologic storage of carbon are a small fraction of the injected carbon.


Assuntos
Dióxido de Carbono , Carbono , Inundações , Mudança Climática
2.
Proc Math Phys Eng Sci ; 472(2185): 20150758, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26997904

RESUMO

This work considers a landslide caused by the shear band that emerges along the potential slip (rupture) surface. The material above the band slides downwards, causing the band to grow along the slope. This growth may first be stable (progressive), but eventually becomes dynamic (catastrophic). The landslide body acquires a finite velocity before it separates from the substrata. The corresponding initial-boundary value problem for a dynamic shear band is formulated within the framework of Palmer & Rice's (Proc. R. Soc. Lond. A332, 527-548. (doi:10.1098/rspa.1973.0040)) approach, which is generalized to the dynamic case. We obtain the exact, closed-form solution for the band velocity and slip rate. This solution assesses when the slope fails owing to a limiting condition near the propagating tip of the shear band. Our results are applicable to both submarine and subaerial landslides of this type. It appears that neglecting dynamic (inertia) effects can lead to a significant underestimation of the slide size, and that the volumes of catastrophic slides can exceed the volumes of progressive slides by nearly a factor of 2. As examples, we consider the Gaviota and Humboldt slides offshore of California, and discuss landslides in normally consolidated sediments and sensitive clays. In particular, it is conceivable that Humboldt slide is unfinished and may still displace a large volume of sediments, which could generate a considerable tsunami. We show that in the case of submarine slides, the effect of water resistance on the shear band dynamics may frequently be limited during the slope failure stage. For a varying slope angle, we formulate a condition of slide cessation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...