Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
Am J Clin Nutr ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960320

RESUMO

BACKGROUND: Prenatal fish intake is a key source of omega-3 polyunsaturated fatty acids needed for brain development, yet intake is generally low, and studies addressing associations with autism spectrum disorder (ASD) and related traits are lacking. OBJECTIVE: To examine associations of prenatal fish intake and omega-3 supplement use with both autism diagnosis and broader autism-related traits. METHODS: Participants were drawn from 32 cohorts in the Environmental influences on Child Health Outcomes (ECHO) Cohort Consortium. Children were born between 1999 and 2019 and part of ongoing follow-up with data available for analysis by August 2022. Exposures included self-reported maternal fish intake and omega-3/fish oil supplement use during pregnancy. Outcome measures included parent report of clinician-diagnosed ASD and parent-reported autism-related traits measured by the Social Responsiveness Scale (SRS)-Second Edition (n=3939 and n=3609 for fish intake analyses, respectively; n=4537 and n=3925 for supplement intake analyses, respectively). RESULTS: In adjusted regression models, relative to no fish intake, fish intake during pregnancy was associated with reduced odds of autism diagnosis (OR=0.84, 95% CI 0.77 to 0.92), and a modest reduction in raw total SRS scores (b=-1.69, 95% CI -3.3 to -0.08). Estimates were similar across categories of fish consumption from "any" or "less than once per week" to "more than twice per week." For omega-3 supplement use, relative to no use, no significant associations with autism diagnosis were identified, whereas a modest relation with SRS score was suggested (ß=1.98, 95% CI 0.33-3.64). CONCLUSIONS: These results extend prior work by suggesting that prenatal fish intake, but not omega-3 supplement use, may be associated with lower likelihood of both autism diagnosis and related traits. Given the low fish intake in the U.S. general population and the rising autism prevalence, these findings suggest the need for better public health messaging regarding guidelines on fish intake for pregnant individuals.

2.
Pediatr Allergy Immunol ; 35(7): e14197, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016335

RESUMO

BACKGROUND: Viral wheezing is an important risk factor for asthma, which comprises several respiratory phenotypes. We sought to understand if the etiology of early-life wheezing illnesses relates to childhood respiratory and asthma phenotypes. METHODS: Data were collected prospectively on 429 children in the Urban Environment and Childhood Asthma (URECA) birth cohort study through age 10 years. We identified wheezing illnesses and the corresponding viral etiology (PCR testing of nasal mucus) during the first 3 years of life. Six phenotypes of respiratory health were identified at 10 years of age based on trajectories of wheezing, allergic sensitization, and lung function. We compared the etiology of early wheezing illnesses to these wheezing respiratory phenotypes and the development of asthma. RESULTS: In the first 3 years of life, at least one virus was detected in 324 (67%) of the 483 wheezing episodes documented in the study cohort. Using hierarchical partitioning we found that non-viral wheezing episodes accounted for the greatest variance in asthma diagnosed at both 7 and 10 years of age (8.0% and 5.8% respectively). Rhinovirus wheezing illnesses explained the most variance in respiratory phenotype outcome followed by non-viral wheezing episodes (4.9% and 3.9% respectively) at 10 years of age. CONCLUSION AND RELEVANCE: Within this high-risk urban-residing cohort in early life, non-viral wheezing episodes were frequently identified and associated with asthma development. Though rhinovirus wheezing illnesses had the greatest association with phenotype outcome, the specific etiology of wheezing episodes in early life provided limited information about subsequent wheezing phenotypes.


Assuntos
Asma , Fenótipo , Sons Respiratórios , População Urbana , Humanos , Asma/epidemiologia , Asma/virologia , Lactente , Feminino , Masculino , Pré-Escolar , Criança , Estudos Prospectivos , Rhinovirus , Fatores de Risco , Estudos de Coortes , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/complicações , Recém-Nascido
3.
Artigo em Inglês | MEDLINE | ID: mdl-38981012

RESUMO

Asthma is a descriptive label for an obstructive, inflammatory disease in the lower airways manifesting with symptoms including breathlessness, cough, difficulty in breathing and wheezing. From a clinician's point of view, asthma symptoms can commence at any age although most asthma patients - regardless of their age of onset - seem to have had some form of airway problems during childhood. Asthma inception and related pathophysiologic processes are therefore very likely to occur early in life, further evidenced by recent lung physiologic and mechanistic research. Herein, we present state-of-the-art updates on the role of genetics and epigenetics, early viral and bacterial infections, immune response and pathophysiology as well as lifestyle and environmental exposures in asthma across the life-course. We conclude early environmental insults in genetically vulnerable individuals to induce an abnormal, pre-asthmatic airway response as key events in asthma inception and highlight disease heterogeneity - across ages - and the potential shortness of treating all patients with asthma using the same treatments. Although there are no interventions that, at present, can modify long-term outcomes, a precision-medicine approach should be implemented to optimize treatment and tailor follow-up for all patients with asthma.

4.
bioRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39026695

RESUMO

Although childhood asthma is in part an airway epithelial disorder, the development of the airway epithelium in asthma is not understood. We sought to characterize airway epithelial developmental phenotypes in those with and without recurrent wheeze and the impact of infant infection with respiratory syncytial virus (RSV). Nasal airway epithelial cells (NAECs) were collected at age 2-3 years from an a priori designed nested birth cohort of children from four mutually exclusive groups of wheezers/non-wheezers and RSV-infected/uninfected in the first year of life. NAECs were cultured in air-liquid interface differentiation conditions followed by a combined analysis of single cell RNA sequencing (scRNA-seq) and in vitro infection with respiratory syncytial virus (RSV). NAECs from children with a wheeze phenotype were characterized by abnormal differentiation and basal cell activation of developmental pathways, plasticity in precursor differentiation and a delayed onset of maturation. NAECs from children with wheeze also had increased diversity of currently known RSV receptors and blunted anti-viral immune responses to in vitro infection. The most dramatic changes in differentiation of cultured epithelium were observed in NAECs derived from children that had both wheeze and RSV in the first year of life. Together this suggests that airway epithelium in children with wheeze is developmentally reprogrammed and characterized by increased barrier permeability, decreased antiviral response, and increased RSV receptors, which may predispose to and amplify the effects of RSV infection in infancy and susceptibility to other asthma risk factors that interact with the airway mucosa. SUMMARY: Nasal airway epithelial cells from children with wheeze are characterized by altered development and increased susceptibility to RSV infection.

6.
J Allergy Clin Immunol Glob ; 3(3): 100270, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881739

RESUMO

Background: Recruitment for research studies is a challenging endeavor that was further complicated by the coronavirus disease 2019 pandemic. We launched a new multicenter birth cohort, Childhood Allergy and the NeOnatal Environment (CANOE), supported by the National Institutes of Health in January 2020 across 4 sites. Although the pandemic temporarily halted clinical research, we restructured the study and instituted novel recruitment methods that we hypothesized would enable brisk enrollment when research activities resumed. Objective: We sought to develop protocol modifications and recruitment methods that promote successful recruitment of diverse populations in clinical research despite a global pandemic. Methods: Even though study activities were suspended, we modified recruitment strategies to limit in-person contact, shifting toward alternative HIPAA-compliant methods such as clinician referrals, institutional social media, and telemedicine screening and consent procedures. Protocol changes included reducing the frequency of in-person visits, leveraging clinical care visits to collect biospecimens, expanded self-collection of samples at home, and making study materials available online. Results: Remote methods, including targeted social media posts, mailed letters, and email, combined with in-clinic recruitment with modifications for social distancing led to successful recruitment at all sites. Rates of consent have been similar across recruitment sites, with the highest rates of enrollment of mother-infant dyads realized by sites that implemented multiple recruitment strategies. Conclusions: Study procedures that prioritize health and safety measures such as social distancing, study participant convenience, and use diverse recruitment strategies enable successful enrollment of pregnant women and their newborns into clinical research while adhering to public health restrictions during a global pandemic.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38869320

RESUMO

RATIONALE: Identifying the root causes of racial disparities in childhood asthma is critical for health equity. OBJECTIVES: To determine if the 1930's racist policy of redlining led to present-day disparities in childhood asthma by increasing community-level poverty and decreasing neighborhood socioeconomic position (SEP). METHODS: We categorized census tracts at birth of participants from the Children's Respiratory and Environmental Workgroup birth cohort consortium into A, B, C, or D categories as defined by the Home Owners Loan Corporation (HOLC), with D being the highest perceived risk. Surrogates of present-day neighborhood-level SEP were determined for each tract including the percentage of low-income households, the CDC's social vulnerability index (SVI), and other tract-level variables. We performed causal mediation analysis, which, under the assumption of no unmeasured confounding, estimates the direct and mediated pathways by which redlining may cause asthma disparities through census tract-level mediators adjusting for individual-level covariates. MEASUREMENTS AND MAIN RESULTS: Of 4,849 children, the cumulative incidence of asthma through age 11 was 26.6% and 13.2% resided in census tracts with a HOLC grade of D. In mediation analyses, residing in grade D tracts (aOR = 1.03 [95%CI 1.01,1.05]) was significantly associated with childhood asthma, with 79% of this increased risk mediated by percentage of low-income households; results were similar for SVI and other tract-level variables. CONCLUSIONS: The historical structural racist policy of redlining led to present-day asthma disparities in part through decreased neighborhood SEP. Policies aimed at reversing the effects of structural racism should be considered to create more just, equitable, and healthy communities.

8.
Sci Rep ; 14(1): 10431, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714841

RESUMO

Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.


Assuntos
Resfriado Comum , Pan troglodytes , Animais , Humanos , Criança , Feminino , Masculino , Pré-Escolar , Resfriado Comum/epidemiologia , Resfriado Comum/virologia , Adulto , Uganda/epidemiologia , Estudos Prospectivos , Zoonoses/epidemiologia , Zoonoses/virologia , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/transmissão , Doenças dos Símios Antropoides/epidemiologia , Doenças dos Símios Antropoides/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Infecções Respiratórias/veterinária , Rhinovirus/isolamento & purificação , Rhinovirus/genética , SARS-CoV-2/isolamento & purificação , Incidência
10.
Front Pediatr ; 12: 1379131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756971

RESUMO

Introduction: Respiratory illness is the most common childhood disease globally, especially in developing countries. Previous studies have detected viruses in approximately 70-80% of respiratory illnesses. Methods: In a prospective cohort study of 234 young children (ages 3-11 years) and 30 adults (ages 22-51 years) in rural Western Uganda sampled monthly from May 2019 to August 2021, only 24.2% of nasopharyngeal swabs collected during symptomatic disease had viruses detectable by multiplex PCR diagnostics and metagenomic sequencing. In the remaining 75.8% of swabs from symptomatic participants, we measured detection rates of respiratory bacteria Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae by quantitative PCR. Results: 100% of children tested positive for at least one bacterial species. Detection rates were 87.2%, 96.8%, and 77.6% in children and 10.0%, 36.7%, and 13.3% for adults for H. influenzae, M. catarrhalis, and S. pneumoniae, respectively. In children, 20.8% and 70.4% were coinfected with two and three pathogens, respectively, and in adults 6.7% were coinfected with three pathogens but none were coinfected with two. Detection of any of the three pathogens was not associated with season or respiratory symptoms severity, although parsing detection status by symptoms was challenged by children experiencing symptoms in 80.3% of monthly samplings, whereas adults only reported symptoms 26.6% of the time. Pathobiont colonization in children in Western Uganda was significantly more frequent than in children living in high-income countries, including in a study of age-matched US children that utilized identical diagnostic methods. Detection rates were, however, comparable to rates in children living in other Sub-Saharan African countries. Discussion: Overall, our results demonstrate that nonviral colds contribute significantly to respiratory disease burden among children in rural Uganda and that high rates of respiratory pathobiont colonization may play a role. These conclusions have implications for respiratory health interventions in the area, such as increasing childhood immunization rates and decreasing air pollutant exposure.

11.
Sci Rep ; 14(1): 11798, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782975

RESUMO

Using pooled vaginal microbiota data from pregnancy cohorts (N = 683 participants) in the Environmental influences on Child Health Outcomes (ECHO) Program, we analyzed 16S rRNA gene amplicon sequences to identify clinical and demographic host factors that associate with vaginal microbiota structure in pregnancy both within and across diverse cohorts. Using PERMANOVA models, we assessed factors associated with vaginal community structure in pregnancy, examined whether host factors were conserved across populations, and tested the independent and combined effects of host factors on vaginal community state types (CSTs) using multinomial logistic regression models. Demographic and social factors explained a larger amount of variation in the vaginal microbiome in pregnancy than clinical factors. After adjustment, lower education, rather than self-identified race, remained a robust predictor of L. iners dominant (CST III) and diverse (CST IV) (OR = 8.44, 95% CI = 4.06-17.6 and OR = 4.18, 95% CI = 1.88-9.26, respectively). In random forest models, we identified specific taxonomic features of host factors, particularly urogenital pathogens associated with pregnancy complications (Aerococcus christensenii and Gardnerella spp.) among other facultative anaerobes and key markers of community instability (L. iners). Sociodemographic factors were robustly associated with vaginal microbiota structure in pregnancy and should be considered as sources of variation in human microbiome studies.


Assuntos
Microbiota , RNA Ribossômico 16S , Vagina , Humanos , Feminino , Gravidez , Vagina/microbiologia , Microbiota/genética , Adulto , RNA Ribossômico 16S/genética , Estudos de Coortes , Adulto Jovem
12.
Artigo em Inglês | MEDLINE | ID: mdl-38574825

RESUMO

BACKGROUND: Allergic sensitization and low lung function in early childhood are risk factors for subsequent wheezing and asthma. However, it is unclear how allergic sensitization affects lung function over time. OBJECTIVE: We sought to test whether allergy influences lung function and whether these factors synergistically increase the risk of continued wheezing in childhood. METHODS: We analyzed longitudinal measurements of lung function (spirometry and impulse oscillometry) and allergic sensitization (aeroallergen skin tests and serum allergen-specific IgE) throughout early childhood in the Urban Environmental and Childhood Asthma study, which included high-risk urban children living in disadvantaged neighborhoods. Intraclass correlation coefficients were calculated to assess lung function stability. Cluster analysis identified low, medium, and high allergy trajectories, which were compared with lung function and wheezing episodes in linear regression models. A variable selection model assessed predictors at age 5 years for continued wheezing through age 12 years. RESULTS: Lung function adjusted for growth was stable (intraclass correlation coefficient, 0.5-0.7) from age 5 to 12 years and unrelated to allergy trajectory. Lung function and allergic sensitization were associated with wheezing episodes in an additive fashion. In children with asthma, measuring lung function at age 5 years added little to the medical history for predicting future wheezing episodes through age 12 years. CONCLUSIONS: In high-risk urban children, age-related trajectories of allergic sensitization were not associated with lung function development; however, both indicators were related to continued wheezing. These results underscore the importance of understanding early-life factors that negatively affect lung development and suggest that treating allergic sensitization may not alter lung function development in early to mid-childhood.

13.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38645133

RESUMO

Background: Alterations in upper respiratory microbiomes have been implicated in shaping host health trajectories, including by limiting mucosal pathogen colonization. However, limited comparative studies of respiratory microbiome development and functioning across age groups have been performed. Herein, we perform shotgun metagenomic sequencing paired with pathogen inhibition assays to elucidate differences in nasal and oral microbiome composition and functioning across healthy 24-month-old infant (n=229) and adult (n=100) populations. Results: We find that beta diversity of nasal and oral microbiomes varies with age, with nasal microbiomes showing greater population-level variation compared to oral microbiomes. Infant microbiome alpha diversity was significantly lower across nasal samples and higher in oral samples, relative to adults. Accordingly, we demonstrate significant differences in genus- and species-level composition of microbiomes between sites and age groups. Antimicrobial resistome patterns likewise varied across body sites, with oral microbiomes showing higher resistance gene abundance compared to nasal microbiomes. Biosynthetic gene clusters encoding specialized metabolite production were found in higher abundance across infant oral microbiomes, relative to adults. Investigation of pathogen inhibition revealed greater inhibition of gram-negative and gram-positive bacteria by oral commensals, while nasal isolates had higher antifungal activity. Conclusions: In summary, we identify significant differences in the microbial communities inhabiting nasal and oral cavities of healthy infants relative to adults. These findings inform our understanding of the interactions impacting respiratory microbiome composition and functioning, with important implications for host health across the lifespan.

14.
Front Pediatr ; 12: 1336009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650995

RESUMO

Introduction: Respiratory disease is a major cause of morbidity and mortality in the developing world, but prospective studies of temporal patterns and risk factors are rare. Methods: We studied people in rural Western Uganda, where respiratory disease is pervasive. We followed 30 adults (ages 22-51 years; 534 observations) and 234 children (ages 3-11 years; 1,513 observations) between May 2019 and July 2022 and collected monthly data on their respiratory symptoms, for a total of 2,047 case records. We examined associations between demographic and temporal factors and respiratory symptoms severity. Results: The timing of our study (before, during, and after the emergence of COVID-19) allowed us to document the effects of public health measures instituted in the region. Incidence rates of respiratory symptoms before COVID-19 lockdown were 568.4 cases per 1,000 person-months in children and 254.2 cases per 1,000 person-months in adults. These rates were 2.6 times higher than the 2019 global average for children but comparable for adults. Younger children (ages 3-6 years) had the highest frequencies and severities of respiratory symptoms. Study participants were most likely to experience symptoms in February, which is a seasonal pattern not previously documented. Incidence and severity of symptoms in children decreased markedly during COVID-19 lockdown, illustrating the broad effects of public health measures on the incidence of respiratory disease. Discussion: Our results demonstrate that patterns of respiratory disease in settings such as Western Uganda resemble patterns in developed economies in some ways (age-related factors) but not in others (increased incidence in children and seasonal pattern). Factors such as indoor air quality, health care access, timing of school trimesters, and seasonal effects (rainy/dry seasons) likely contribute to the differences observed.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38631429

RESUMO

BACKGROUND: Adrenal steroids play important roles in early-life development. However, our understanding of the effects of perinatal adrenal steroids on the development of childhood asthma is incomplete. OBJECTIVE: To evaluate the associations between early-life adrenal steroid levels and childhood asthma. METHODS: Participants included the Infant Susceptibility to Pulmonary Infections and Asthma following Respiratory Syncytial Virus Exposure birth cohort children with untargeted urinary metabolomics data measured during early infancy (n = 264) and nasal immune mediator data measured concurrently at age 2 to 6 months (n = 76). A total of 11 adrenal steroid compounds were identified using untargeted metabolomics and 6 asthma-relevant nasal immune mediators from multiplex assays were a priori selected. Current asthma at ages 5 and 6 years was ascertained using validated questionnaires. Associations were tested using logistic and linear regression with confounders adjustment. RESULTS: Pregnenetriol disulfate (adjusted odds ratio [aOR] = 0.20, 95% CI = 0.06-0.68) and 3a,21-dihydroxy-5b-pregnane-11,20-dione-21-glucuronide (aOR = 0.34, 95% CI = 0.14-0.75) were inversely associated with childhood asthma at 5 and 6 years after multiple testing adjustment. There was a significant interaction effect of pregnanediol-3-glucuronide by biological sex assigned at birth (aOR = 0.11, 95% CI = 0.02-0.51, for those with female sex) on childhood asthma. Pregnenetriol disulfate was inversely associated with granulocyte-macrophage colony-stimulating factor (ß = -0.45, q-value = 0.05). 3a,21-dihydroxy-5b-pregnane-11,20-dione 21-glucuronide was inversely associated with interleukin [IL]-4 (ß = -0.29, q-value = 0.02), IL-5 (ß = -0.35, q-value = 0.006), IL-13 (ß = -0.26, q-value = 0.02), granulocyte-macrophage colony-stimulating factor (ß = -0.35, q-value = 0.006), and fibroblast growth factor-ß (ß = -0.24, q-value = 0.01) after multiple testing adjustment. CONCLUSION: The inverse association between adrenal steroids downstream of progesterone and 17-hydroxypregnenolone and the odds of childhood asthma and nasopharyngeal type 2 immune biomarkers suggest that increased early-life adrenal steroids may suppress type 2 inflammation and protect against the development of childhood asthma.

16.
Pediatr Allergy Immunol ; 35(4): e14129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38664926

RESUMO

Monitoring is a major component of asthma management in children. Regular monitoring allows for diagnosis confirmation, treatment optimization, and natural history review. Numerous factors that may affect disease activity and patient well-being need to be monitored: response and adherence to treatment, disease control, disease progression, comorbidities, quality of life, medication side-effects, allergen and irritant exposures, diet and more. However, the prioritization of such factors and the selection of relevant assessment tools is an unmet need. Furthermore, rapidly developing technologies promise new opportunities for closer, or even "real-time," monitoring between visits. Following an approach that included needs assessment, evidence appraisal, and Delphi consensus, the PeARL Think Tank, in collaboration with major international professional and patient organizations, has developed a set of 24 recommendations on pediatric asthma monitoring, to support healthcare professionals in decision-making and care pathway design.


Assuntos
Asma , Humanos , Asma/diagnóstico , Asma/terapia , Criança , Qualidade de Vida , Antiasmáticos/uso terapêutico , Técnica Delphi , Monitorização Fisiológica/métodos
17.
J Allergy Clin Immunol ; 153(6): 1604-1610.e2, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438085

RESUMO

BACKGROUND: The atopic march refers to the coexpression and progression of atopic diseases in childhood, often beginning with atopic dermatitis (AD), although children may not progress through each atopic disease. OBJECTIVE: We hypothesized that future atopic disease expression is modified by AD phenotype and that these differences result from underlying dysregulation of cytokine signaling. METHODS: Children (n = 285) were enrolled into the Childhood Origins of Asthma (COAST) birth cohort and followed prospectively. Rates of AD, food allergy, allergic rhinitis, and asthma were assessed longitudinally from birth to 18 years of age. Associations between AD phenotype and food allergy, allergic rhinitis, asthma, allergic sensitization, exhaled nitric oxide, and lung function were determined. Peripheral blood mononuclear cell responses (IL-5, IL-10, IL-13, IFN-γ) to dust mite, phytohemagglutinin, Staphylococcus aureus Cowan I, and tetanus toxoid were compared among AD phenotypes. RESULTS: AD at year 1 was associated with an increased risk of food allergy (P = .004). Both persistent and late-onset AD were associated with an increased risk of asthma (P < .001), rhinitis (P < .001), elevated total IgE (P < .001), percentage of aeroallergens with detectable IgE (P < .001), and elevated exhaled nitric oxide (P = .002). Longitudinal analyses did not reveal consistent differences in peripheral blood mononuclear cell responses among dermatitis phenotypes. CONCLUSION: AD phenotype is associated with differential expression of other atopic diseases. Our findings suggest that peripheral blood cytokine dysregulation is not a mechanism underlying this process, and immune dysregulation may be mediated at mucosal surfaces or in secondary lymphoid organs.


Assuntos
Citocinas , Dermatite Atópica , Leucócitos Mononucleares , Fenótipo , Humanos , Dermatite Atópica/imunologia , Pré-Escolar , Criança , Masculino , Feminino , Citocinas/imunologia , Citocinas/metabolismo , Lactente , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Adolescente , Asma/imunologia , Hipersensibilidade Alimentar/imunologia , Recém-Nascido , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Rinite Alérgica/imunologia , Estudos Longitudinais
18.
Environ Res ; 252(Pt 1): 118765, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548252

RESUMO

The corona virus disease (COVID-19) pandemic disrupted daily life worldwide, and its impact on child well-being remains a major concern. Neighborhood characteristics affect child well-being, but how these associations were affected by the pandemic is not well understood. We analyzed data from 1039 children enrolled in the Environmental influences on Child Health Outcomes Program whose well-being was assessed using the Patient-Reported Outcomes Measurement Information System Global Health questionnaire and linked these data to American Community Survey (ACS) data to evaluate the impacts of neighborhood characteristics on child well-being before and during the pandemic. We estimated the associations between more than 400 ACS variables and child well-being t-scores stratified by race/ethnicity (non-Hispanic white vs. all other races and ethnicities) and the timing of outcome data assessment (pre-vs. during the pandemic). Network graphs were used to visualize the associations between ACS variables and child well-being t-scores. The number of ACS variables associated with well-being t-scores decreased during the pandemic period. Comparing non-Hispanic white with other racial/ethnic groups during the pandemic, different ACS variables were associated with child well-being. Multiple ACS variables representing census tract-level housing conditions and neighborhood racial composition were associated with lower well-being t-scores among non-Hispanic white children during the pandemic, while higher percentage of Hispanic residents and higher percentage of adults working as essential workers in census tracts were associated with lower well-being t-scores among non-white children during the same study period. Our study provides insights into the associations between neighborhood characteristics and child well-being, and how the COVID-19 pandemic affected this relationship.


Assuntos
COVID-19 , Saúde da Criança , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , COVID-19/epidemiologia , Estudos Transversais , Etnicidade/estatística & dados numéricos , Características da Vizinhança , Pandemias , Estados Unidos/epidemiologia , Grupos Raciais/estatística & dados numéricos
19.
J Allergy Clin Immunol ; 153(6): 1647-1654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38309597

RESUMO

BACKGROUND: Farm exposures in early life reduce the risks for childhood allergic diseases and asthma. There is less information about how farm exposures relate to respiratory illnesses and mucosal immune development. OBJECTIVE: We hypothesized that children raised in farm environments have a lower incidence of respiratory illnesses over the first 2 years of life than nonfarm children. We also analyzed whether farm exposures or respiratory illnesses were related to patterns of nasal cell gene expression. METHODS: The Wisconsin Infant Study Cohort included farm (n = 156) and nonfarm (n = 155) families with children followed to age 2 years. Parents reported prenatal farm and other environmental exposures. Illness frequency and severity were assessed using illness diaries and periodic surveys. Nasopharyngeal cell gene expression in a subset of 64 children at age 2 years was compared to farm exposure and respiratory illness history. RESULTS: Farm versus nonfarm children had nominally lower rates of respiratory illnesses (rate ratio 0.82 [95% CI, 0.69, 0.97]) with a stepwise reduction in illness rates in children exposed to 0, 1, or ≥2 animal species, but these trends were nonsignificant in a multivariable model. Farm exposures and preceding respiratory illnesses were positively related to nasal cell gene signatures for mononuclear cells and innate and antimicrobial responses. CONCLUSIONS: Maternal and infant exposure to farms and farm animals was associated with nonsignificant trends for reduced respiratory illnesses. Nasal cell gene expression in a subset of children suggests that farm exposures and respiratory illnesses in early life are associated with distinct patterns of mucosal immune expression.


Assuntos
Exposição Ambiental , Fazendas , Mucosa Nasal , Doenças Respiratórias , Humanos , Feminino , Animais , Masculino , Lactente , Exposição Ambiental/efeitos adversos , Pré-Escolar , Mucosa Nasal/imunologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/genética , Animais Domésticos/imunologia , Recém-Nascido , Wisconsin/epidemiologia
20.
J Allergy Clin Immunol ; 153(6): 1563-1573, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423369

RESUMO

BACKGROUND: Five distinct respiratory phenotypes based on latent classes of longitudinal patterns of wheezing, allergic sensitization. and pulmonary function measured in urban children from ages from 0 to 7 years have previously been described. OBJECTIVE: Our aim was to determine whether distinct respiratory phenotypes are associated with early-life upper respiratory microbiota development and environmental microbial exposures. METHODS: Microbiota profiling was performed using 16S ribosomal RNA-based sequencing of nasal samples collected at age 12 months (n = 120) or age 36 months (n = 142) and paired house dust samples collected at 3 months (12-month, n = 73; 36-month, n = 90) from all 4 centers in the Urban Environment and Childhood Asthma (URECA) cohort. RESULTS: In these high-risk urban children, nasal microbiota increased in diversity between ages 12 and 36 months (ß = 2.04; P = .006). Age-related changes in microbiota evenness differed significantly by respiratory phenotypes (interaction P = .0007), increasing most in the transient wheeze group. At age 12 months, respiratory illness (R2 = 0.055; P = .0001) and dominant bacterial genus (R2 = 0.59; P = .0001) explained variance in nasal microbiota composition, and enrichment of Moraxella and Haemophilus members was associated with both transient and high-wheeze respiratory phenotypes. By age 36 months, nasal microbiota was significantly associated with respiratory phenotypes (R2 = 0.019; P = .0376), and Moraxella-dominated microbiota was associated specifically with atopy-associated phenotypes. Analysis of paired house dust and nasal samples indicated that 12 month olds with low wheeze and atopy incidence exhibited the largest number of shared bacterial taxa with their environment. CONCLUSION: Nasal microbiota development over the course of early childhood and composition at age 3 years are associated with longitudinal respiratory phenotypes. These data provide evidence supporting an early-life window of airway microbiota development that is influenced by environmental microbial exposures in infancy and associates with wheeze- and atopy-associated respiratory phenotypes through age 7 years.


Assuntos
Microbiota , Fenótipo , Sons Respiratórios , População Urbana , Humanos , Lactente , Pré-Escolar , Masculino , Feminino , Estudos Longitudinais , Asma/microbiologia , Asma/epidemiologia , Poeira/análise , Poeira/imunologia , Exposição Ambiental , Nariz/microbiologia , RNA Ribossômico 16S/genética , Criança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...