Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Air Soil Pollut ; 223(7): 4485-4494, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22865942

RESUMO

In the light of global change, the necessity to monitor atmospheric depositions that have relevant effects on ecosystems is ever increasing particularly for tropical sites. For this study, atmospheric ionic depositions were measured on tropical Central Sulawesi at remote sites with both a conventional bulk water collector system (BWS collector) and with a passive ion exchange resin collector system (IER collector). The principle of IER collector to fix all ionic depositions, i.e. anions and cations, has certain advantages referring to (1) post-deposition transformation processes, (2) low ionic concentrations and (3) low rainfall and associated particulate inputs, e.g. dust or sand. The ionic concentrations to be measured for BWS collectors may easily fall below detection limits under low deposition conditions which are common for tropical sites of low land use intensity. Additionally, BWS collections are not as independent from the amount of rain fallen as are IER collections. For this study, the significant differences between both collectors found for nearly all measured elements were partly correlated to the rainfall pattern, i.e. for calcium, magnesium, potassium and sodium. However, the significant differences were, in most cases, not highly relevant. More relevant differences between the systems were found for aluminium and nitrate (434-484 %). Almost five times higher values for nitrate clarified the advantage of the IER system particularly for low deposition rate which is one particularity of atmospheric ionic deposition in tropical sites of extensive land use. The monthly resolution of the IER data offers new insights into the temporal distribution of annual ionic depositions. Here, it did not follow the tropical rain pattern of a drier season within generally wet conditions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-18510100

RESUMO

Recognition of microbial infection and initiation of immune responses are controlled by multiple mechanisms. Toll-like receptors (TLRs) are key components of the innate immune system that detect microbial infection. TLR activation helps to eliminate the invading pathogens, coordinate systemic defenses, and initiate adaptive immune responses. Despite progress elucidating the TLR signaling aspects and the physiological relevance of TLRs in microbial infections, the molecular basis of microbial recognition by TLRs is still not fully understood. In this article we focus on the availability of microbial ligands to regulate presentation to TLRs and assist in our understanding of TLR-mediated microbial recognition.


Assuntos
Proteínas de Bactérias/imunologia , Lipoproteínas/imunologia , Modelos Imunológicos , Receptor 2 Toll-Like/imunologia , Animais , Proteínas de Bactérias/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Lipoproteínas/metabolismo , Receptor 2 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA