Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380748

RESUMO

We study heat exchange in temperature-biased metal-molecule-metal molecular junctions by employing the molecular dynamics simulator LAMMPS. Generating the nonequilibrium steady state with Langevin thermostats at the boundaries of the junction, we show that the average heat current across a gold-alkanedithiol-gold nanojunction behaves physically, with the thermal conductance value matching the literature. In contrast, the full probability distribution function for heat exchange, as generated by the simulator, violates the fundamental fluctuation symmetry for entropy production. We trace this failure back to the implementation of the thermostats and the expression used to calculate the heat exchange. To rectify this issue and produce the correct statistics, we introduce single-atom thermostats as an alternative to conventional many-atom thermostats. Once averaging heat exchange over the hot and cold thermostats, this approach successfully generates the correct probability distribution function, which we use to study the behavior of both the average heat current and its noise. We further examine the thermodynamic uncertainty relation in the molecular junction and show that it holds, albeit demonstrating nontrivial trends. Our study points to the need to carefully implement nonequilibrium molecular dynamics solvers in atomistic simulation software tools for future investigations of noise phenomena in thermal transport.

2.
Nano Lett ; 24(6): 1981-1987, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291719

RESUMO

Electronic flicker noise is recognized as the most abundant noise in electronic conductors, either as an unwanted contribution or as a source of information on electron transport mechanisms and material properties. This noise is typically observed when a voltage difference is applied across a conductor or current is flowing through it. Here, we identify an unknown type of electronic flicker noise that is found when a temperature difference is applied across a nanoscale conductor in the absence of a net charge current or voltage bias. The revealed delta-T flicker noise is demonstrated in molecular junctions and characterized using quantum transport theory. This noise is expected to arise in nanoscale electronic conductors subjected to unintentional temperature gradients, where it can be a performance-limiting factor. On the positive side, delta-T flicker noise can detect temperature differences across a large variety of nanoscale conductors, down to atomic-scale junctions with no special setup requirements.

3.
Phys Rev E ; 108(2-1): 024135, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723810

RESUMO

We study kinetic transport through one-dimensional modular networks consisting of alternating domains using both analytical and numerical methods. We demonstrate that the mean velocity is insensitive to the local structure of the network, and it depends only on global, structural-averaged properties. However, by examining high-order cumulants characterizing the kinetics, we reveal information on the degree of inhomogeneity of blocks and the size of repeating units in the network. Specifically, in unbiased diffusion, the kurtosis is the first transport coefficient that exposes structural information, whereas in biased chains, the diffusion coefficient already reveals structural motifs. Nevertheless, this latter dependence is weak, and it disappears at both low and high biasing. Our study demonstrates that high-order moments of the population distribution over sites provide information about the network structure that is not captured by the first moment (mean velocity) alone. These results are useful towards deciphering mechanisms and determining architectures underlying long-range charge transport in biomolecules and biological and chemical reaction networks.

4.
Phys Rev E ; 107(5-1): 054115, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329000

RESUMO

Recently, a "unified" quantum master equation was derived and shown to be of the Gorini-Kossakowski-Lindblad-Sudarshan form. This equation describes the dynamics of open quantum systems in a manner that forgoes the full secular approximation and retains the impact of coherences between eigenstates close in energy. We implement full counting statistics with the unified quantum master equation to investigate the statistics of energy currents through open quantum systems with nearly degenerate levels. We show that, in general, this equation gives rise to dynamics that satisfy fluctuation symmetry, a sufficient condition for the Second Law of Thermodynamics at the level of average fluxes. For systems with nearly degenerate energy levels, such that coherences build up, the unified equation is simultaneously thermodynamically consistent and more accurate than the fully secular master equation. We exemplify our results for a "V" system facilitating energy transport between two thermal baths at different temperatures. We compare the statistics of steady-state heat currents through this system as predicted by the unified equation to those given by the Redfield equation, which is less approximate but, in general, not thermodynamically consistent. We also compare results to the secular equation, where coherences are entirely abandoned. We find that maintaining coherences between nearly degenerate levels is essential to properly capture the current and its cumulants. On the other hand, the relative fluctuations of the heat current, which embody the thermodynamic uncertainty relation, display inconsequential dependence on quantum coherences.


Assuntos
Temperatura Alta , Teoria Quântica , Termodinâmica , Fenômenos Físicos
5.
Phys Rev Lett ; 127(19): 190603, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797144

RESUMO

We study bounds on ratios of fluctuations in steady-state time-reversal energy conversion devices. In the linear response regime, we prove that the relative fluctuations (precision) of the output current (power) is always lower bounded by the relative fluctuations of the input current (heat current absorbed from the hot bath). As a consequence, the ratio between the fluctuations of the output and input currents are bounded both from above and below, where the lower (upper) bound is determined by the square of the averaged efficiency (square of the Carnot efficiency) of the engine. The saturation of the lower bound is achieved in the tight-coupling limit when the determinant of the Onsager response matrix vanishes. Our analysis can be applied to different operational regimes, including engines, refrigerators, and heat pumps. We illustrate our findings in two types of continuous engines: two-terminal coherent thermoelectric junctions and three-terminal quantum absorption refrigerators. Numerical simulations in the far-from-equilibrium regime suggest that these bounds apply more broadly, beyond linear response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...