Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 107(3): 505-18, 1989 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2612376

RESUMO

We have analyzed the mechanism of sex determination in the germ line of Drosophila by manipulating three parameters: (1) the ratio of X-chromosomes to sets of autosomes (X:A); (2) the state of activity of the gene Sex-lethal (Sxl), and (3) the sex of the gonadal soma. To this end, animals with a ratio of 2X:2A and 2X:3A were sexually transformed into pseudomales by mutations at the sex-determining genes Sxl (Sex-lethal), tra (transformer), tra-2 (transformer-2), or dsx (double-sex). Animals with the karyotype 2X;3A were also transformed into pseudofemales by the constitutive mutation SxlM1. The sexual phenotype of the gonads and of the germ cells was assessed by phase-contrast microscopy. Confirming the conclusions of Steinmann-Zwicky et al. (Cell 57, 157, 1989), we found that all three parameters affect sex determination in germ cells. In contrast to the soma in which sex determination is completely cell-autonomous, sex determination in the germ line has a non-autonomous component inasmuch as the sex of the soma can influence the sexual pathway of the germ cells. Somatic induction has a clear effect on 2X;2A germ cells that carry a Sxl+ allele. These cells, which form eggs in an ovary, can enter spermatogenesis in testes. Mutations that cause partial loss of function or gain of function of Sxl thwart somatic induction and, independently of the sex of the soma, dictate spermatogenesis or oogenesis, respectively. Somatic induction has a much weaker effect on 2X;3A germ cells. This ratio is essentially a male signal for germ cells which consistently enter spermatogenesis in testes, even when they carry SxlM1. In a female soma, however, SxlM1 enables the 2X;3A germ cells to form almost normal eggs. Our results show that sex determination in the germ line is more complex than in the soma. They provide further evidence that the state of Sxl, the key gene for sex determination and dosage compensation in the soma, also determines the sex of the germ cells, and that, in the germ line, the state of activity of Sxl is regulated not only by the X:A ratio, but also by somatic inductive stimuli.


Assuntos
Drosophila/genética , Gametogênese/fisiologia , Análise para Determinação do Sexo , Animais , Feminino , Gametogênese/genética , Regulação da Expressão Gênica/genética , Genótipo , Células Germinativas/fisiologia , Camadas Germinativas/fisiologia , Gônadas/fisiologia , Masculino , Mutação , Fenótipo
2.
EMBO J ; 1(12): 1513-9, 1982.
Artigo em Inglês | MEDLINE | ID: mdl-6765199

RESUMO

In analogy to the Escherichia coli replicative DNA polymerase III we define two forms of DNA polymerase alpha: the core enzyme and the holoenzyme. The core enzyme is not able to elongate efficiently primed single-stranded DNA templates, in contrast to the holoenzyme which functions well on in vivo-like template. Using these criteria, we have identified and partially purified DNA polymerase alpha holoenzyme from calf thymus and have compared it to the corresponding homogeneous DNA polymerase alpha (defined as the core enzyme) from the same tissue. The holoenzyme is able to use single-stranded parvoviral DNA and M13 DNA with a single RNA primer as template. The core enzyme, on the other hand, although active on DNAs treated with deoxyribonuclease to create random gaps, is unable to act on these two long, single-stranded DNAs. E. coli DNA polymerase III holoenzyme also copies the two in vivo-like templates, while the core enzyme is virtually inactive. The homologous single-stranded DNA-binding proteins from calf thymus and from E. coli stimulate the respective holoenzymes and inhibit the core enzymes. These results suggest a cooperation between a DNA polymerase holoenzyme and its homologous single-stranded DNA-binding protein. The prokaryotic and the mammalian holoenzyme behave similarly in several chromatographic systems.


Assuntos
DNA Polimerase II/metabolismo , Replicação do DNA , Escherichia coli/enzimologia , Timo/enzimologia , Animais , Bovinos , DNA Polimerase I/metabolismo , DNA Polimerase II/isolamento & purificação , DNA Polimerase III/metabolismo , Cinética , Substâncias Macromoleculares , Peso Molecular , Especificidade da Espécie , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...