Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37238526

RESUMO

Tribo-films form on surfaces as a result of friction and wear. The wear rate is dependent on the frictional processes, which develop within these tribo-films. Physical-chemical processes with negative entropy production enhance reduction in the wear rate. Such processes intensively develop once self-organization with dissipative structure formation is initiated. This process leads to significant wear rate reduction. Self-organization can only occur after the system loses thermodynamic stability. This article investigates the behavior of entropy production that results in the loss of thermodynamic stability in order to establish the prevalence of friction modes required for self-organization. Tribo-films with dissipative structures form on the friction surface as a consequence of a self-organization process, resulting in an overall wear rate reduction. It has been demonstrated that a tribo-system begins to lose its thermodynamic stability once it reaches the point of maximum entropy production during the running-in stage.

2.
Materials (Basel) ; 15(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499891

RESUMO

Due to the engine's start/stop system and a sudden increase in speed or load, the development of alloys suitable for engine bearings requires excellent tribological properties and high mechanical properties. Including additional elements in the Al-rich matrix of these anti-friction alloys should strengthen their tribological properties. The novelty of this work is in constructing a suitable artificial neural network (ANN) architecture for highly accurate modeling and prediction of the mechanical properties of the bearing aluminum-based alloys and thus optimizing the chemical composition for high mechanical properties. In addition, the study points out the impact of soft and more solid phases on the mechanical properties of these alloys. For this purpose, a huge number of alloys (198 alloys) with different chemical compositions combined from Sn, Pb, Cu, Mg, Zn, Si, Ni, Bi, Ti, Mn, Fe, and Al) were cast, annealed, and tested for determining their mechanical properties. The annealed sample microstructure analysis revealed the formation of soft structural inclusions (Sn-rich, Sn-Pb, and Pb-Sn phases) and solid phase inclusions (strengthened phase, Al2Cu). The mechanical properties of ultimate tensile strength (σu), Brinell hardness (HB), and elongation to failure (δ) were used as control responses for constructing the ANN network. The constructed network was optimized by attempting different network architecture designs to reach minimal errors. Besides the excellent tribological characteristics of the designed set of alloys, soft inclusions based on Sn and Pb and solid-phase Cu inclusions fulfilled the necessary level of mechanical properties for anti-friction alloys; the maximum mechanical properties reached were: σu = 197 ± 7 MPa, HB = 77 ± 4, and δ = 20.3 ± 1.0%. The optimal ANN architecture with the lowest errors (correlation coefficient (R) = 0.94, root mean square error (RMSE) = 3.5, and average actual relative error (AARE) = 1.0%) had two hidden layers with 20 neurons. The model was validated by additional experiments, and the characteristics of the new alloys were accurately predicted with a low level of errors: R ≥ 0.97, RMSE = 1-2.65, and AARE ˂ 10%.

3.
Materials (Basel) ; 15(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35207869

RESUMO

Optimization of the composition of a new generation of bi-nano-multilayered TiAlCrSiN/TiAlCrN-based coatings is outlined in this study for the machining of direct aged (DA) Inconel 718 alloy. Three types of TiAlCrSiN/TiAlCrN-based bi-nano-multi-layer coatings with varying chemical compositions were investigated: (1) a previous state-of-the-art Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N (coating A); (2) Ti0.2Al0.52Cr0.2Si0.08N/Ti0.25Al0.65Cr0.1N with increased amount of Si (up to 8 at.%; coating B); (3) a new Ti0.18Al0.55Cr0.17Si0.05Y0.05N/Ti0.25Al0.65Cr0.1N coating (coating C) with an increased amount of both Si and Y (up to 5 at.% each). The structure of each coating was evaluated by XRD analysis. Micro-mechanical characteristics were investigated using a MicroMaterials NanoTest system and an Anton Paar-RST3 tester. The wear performance of nano-multilayered TiAlCrSiN/TiAlCrN-based coatings was evaluated during the finish turning of direct aged (DA) Inconel 718 alloy. The wear patterns were assessed using optical microscopy imaging. The tribological performance was evaluated through (a) a detailed chip characteristic study and (b) XPS studies of the worn surface of the coated cutting tool. The difference in tribological performance was found to correspond with the type and amount of tribo-films formed on the friction surface under operation. Simultaneous formation of various thermal barrier tribo-films, such as sapphire, mullite, and garnet, was observed. The overall amount of beneficial tribo-films was found to be greater in the new Ti0.18Al0.55Cr0.17Si 0.05Y0.05N/Ti0.25Al0.65Cr0.1N nano-bi-multilayer coating (coating C) than in the previous state-of-the-art coatings (A and B). This resulted in over two-fold improvement of this coating's tool life compared with those of the commercial benchmark AlTiN coating and coating B, as well as a 40% improvement of the tool life of the previous state-of-the-art coating A. Multi-scale self-organization processes were observed: nano-scale tribo-film formation on the cutting tool surface combined with micro-scale generation of strain-induced martensite zones as a result of intensive metal flow during chip formation. Both of these processes are strongly enhanced in the newly developed coating C.

4.
Materials (Basel) ; 14(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499302

RESUMO

Potential relations of tribological characteristics of aluminum antifriction alloys with their compositions and mechanical properties were investigated. In this regard, the properties of eight aluminum alloys containing tin from 5.4% to 11% doped with lead, copper, silicon, zinc, magnesium, and titanium were studied. Mechanical properties such as hardness, strength, relative extension, and impact strength were analyzed. Within the tribological tests seizure load and wear of material were evaluated and secondary structures were studied afterwards. The absence of a definitive correlation between tribological behavior and mechanical properties was shown. It was determined that doping tin over 6% is excessive. The seizure load of the alloys increases with the magnesium content. Secondary structures of the alloys with higher wear rates contain one order less magnesium and tin.

5.
Nanomaterials (Basel) ; 10(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322353

RESUMO

The relationship between the wear process and the adaptive response of the coated cutting tool to external stimuli is demonstrated in this review paper. The goal of the featured case studies is to achieve control over the behavior of the tool/workpiece tribo-system, using an example of severe tribological conditions present under machining with intensive built-up edge (BUE) formation. The built-ups developed during the machining process are dynamic structures with a dual role. On one hand they exhibit protective functions but, on the other hand, the process of built-up edge formation is similar to an avalanche. Periodical growth and breakage of BUE eventually leads to tooltip failure and catastrophe of the entire tribo-system. The process of BUE formation is governed by the stick-slip phenomenon occurring at the chip/tool interface which is associated with the self-organized critical process (SOC). This process could be potentially brought under control through the engineered adaptive response of the tribo-system, with the goal of reducing the scale and frequency of the occurring avalanches (built-ups). A number of multiscale frictional processes could be used to achieve this task. Such processes are associated with the strongly non-equilibrium process of self-organization during friction (nano-scale tribo-films formation) as well as physical-chemical and mechanical processes that develop on a microscopic scale inside the coating layer and the carbide substrate. Various strategies for achieving control over wear behavior are presented in this paper using specific machining case studies of several hard-to-cut materials such as stainless steels, titanium alloy (TiAl6V4), compacted graphitic iron (CGI), each of which typically undergoes strong built-up edge formation. Various categories of hard coatings deposited by different physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods are applied on cutting tools and the results of their tribological and wear performance studies are presented. Future research trends are outlined as well.

6.
Nanomaterials (Basel) ; 9(2)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691050

RESUMO

In the present work, the tribological properties of graphene-reinforced Al2O3-SiCw ceramic nanocomposites fabricated by spark plasma sintering were studied against alumina ball. Compared with pure ceramic, the wear resistance of these nanocomposites was approximately two times higher regardless of the applied load. It was confirmed by Raman spectroscopy that the main factor for the improvement of the wear resistance of the Al2O3-SiCw/Graphene materials was related to the formation of protecting tribolayer on worn surfaces, which leads to enough lubrication to reduce both the friction coefficient, and wear rate.

7.
Entropy (Basel) ; 20(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33265370

RESUMO

The study deals with tribological properties of diamond films that were tested under reciprocal sliding conditions against Si3N4 balls. Adhesive and abrasive wear are explained in terms of nonequilibrium thermodynamic model of friction and wear. Surface roughness alteration and film deformation induce instabilities in the tribological system, therefore self-organization can occur. Instabilities can lead to an increase of the real contact area between the ball and film, resulting in the seizure between the sliding counterparts (degenerative case of self-organization). However, the material cannot withstand the stress and collapses due to high friction forces, thus this regime of sliding corresponds to the adhesive wear. In contrast, a decrease of the real contact area leads to the decrease of the coefficient of friction (constructive self-organization). However, it results in a contact pressure increase on the top of asperities within the contact zone, followed by material collapse, i.e., abrasive wear. Mentioned wear mechanisms should be distinguished from the self-lubricating properties of diamond due to the formation of a carbonaceous layer.

8.
Entropy (Basel) ; 20(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33266712

RESUMO

Experimental investigations of nano-scale spatio-temporal effects that occur on the friction surface under extreme tribological stimuli, in combination with thermodynamic modeling of the self-organization process, are presented in this paper. The study was performed on adaptive PVD (physical vapor deposited) coatings represented by the TiAlCrSiYN/TiAlCrN nano-multilayer PVD coating. A detailed analysis of the worn surface was conducted using scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) methods. It was demonstrated that the coating studied exhibits a very fast adaptive response to the extreme external stimuli through the formation of an increased amount of protective surface tribo-films at the very beginning of the running-in stage of wear. Analysis performed on the friction surface indicates that all of the tribo-film formation processes occur in the nanoscopic scale. The tribo-films form as thermal barrier tribo-ceramics with a complex composition and very low thermal conductivity under high operating temperatures, thus demonstrating reduced friction which results in low cutting forces and wear values. This process presents an opportunity for the surface layer to attain a strong non-equilibrium state. This leads to the stabilization of the exchanging interactions between the tool and environment at a low wear level. This effect is the consequence of the synergistic behavior of complex matter represented by the dynamically formed nano-scale tribo-film layer.

9.
Sci Technol Adv Mater ; 13(4): 043001, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877499

RESUMO

Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...