Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Gastroenterology ; 166(3): 437-449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995867

RESUMO

BACKGROUND & AIMS: RET tyrosine kinase is necessary for enteric nervous system development. Loss-of-function RET mutations cause Hirschsprung disease (HSCR), in which infants are born with aganglionic bowel. Despite surgical correction, patients with HSCR often experience chronic defecatory dysfunction and enterocolitis, suggesting that RET is important after development. To test this hypothesis, we determined the location of postnatal RET and its significance in gastrointestinal (GI) motility. METHODS: RetCFP/+ mice and human transcriptional profiling data were studied to identify the enteric neuronal and epithelial cells that express RET. To determine whether RET regulates gut motility in vivo, genetic, and pharmacologic approaches were used to disrupt RET in all RET-expressing cells, a subset of enteric neurons, or intestinal epithelial cells. RESULTS: Distinct subsets of enteric neurons and enteroendocrine cells expressed RET in the adult intestine. RET disruption in the epithelium, rather than in enteric neurons, slowed GI motility selectively in male mice. RET kinase inhibition phenocopied this effect. Most RET+ epithelial cells were either enterochromaffin cells that release serotonin or L-cells that release peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), both of which can alter motility. RET kinase inhibition exaggerated PYY and GLP-1 release in a nutrient-dependent manner without altering serotonin secretion in mice and human organoids. PYY receptor blockade rescued dysmotility in mice lacking epithelial RET. CONCLUSIONS: RET signaling normally limits nutrient-dependent peptide release from L-cells and this activity is necessary for normal intestinal motility in male mice. These effects could contribute to dysmotility in HSCR, which predominantly affects males, and uncovers a mechanism that could be targeted to treat post-prandial GI dysfunction.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Lactente , Humanos , Masculino , Camundongos , Animais , Peptídeo YY , Serotonina , Doença de Hirschsprung/genética , Células Enteroendócrinas , Intestino Delgado , Peptídeo 1 Semelhante ao Glucagon , Proteínas Proto-Oncogênicas c-ret/genética
2.
Cell Stem Cell ; 30(3): 264-282.e9, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868194

RESUMO

The enteric nervous system (ENS) is derived from both the vagal and sacral component of the neural crest (NC). Here, we present the derivation of sacral ENS precursors from human PSCs via timed exposure to FGF, WNT, and GDF11, which enables posterior patterning and transition from posterior trunk to sacral NC identity, respectively. Using a SOX2::H2B-tdTomato/T::H2B-GFP dual reporter hPSC line, we demonstrate that both trunk and sacral NC emerge from a double-positive neuro-mesodermal progenitor (NMP). Vagal and sacral NC precursors yield distinct neuronal subtypes and migratory behaviors in vitro and in vivo. Remarkably, xenografting of both vagal and sacral NC lineages is required to rescue a mouse model of total aganglionosis, suggesting opportunities in the treatment of severe forms of Hirschsprung's disease.


Assuntos
Doença de Hirschsprung , Animais , Humanos , Camundongos , Proteínas Morfogenéticas Ósseas , Modelos Animais de Doenças , Fatores de Diferenciação de Crescimento , Xenoenxertos , Histonas , Crista Neural
3.
Trends Cell Biol ; 33(6): 446-448, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958997

RESUMO

The heterogeneity and multiple functions of enteric glia have recently been recognized. Guyer et al. have now confirmed the neurogenetic potential of enteric glial cells and have also found that some have an open chromatin configuration, suggesting that some glial cells are poised and ready to differentiate into neurons.


Assuntos
Sistema Nervoso Entérico , Humanos , Sistema Nervoso Entérico/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Neuroglia/fisiologia
4.
Adv Exp Med Biol ; 1383: 307-318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587168

RESUMO

Historically and quantitatively, the enteric site of serotonin (5-HT) storage has primacy over those of any other organ. 5-HT, by the name of "enteramine", was first discovered in the bowel, and the gut produces most of the body's 5-HT. Not only does the bowel secrete 5-HT prodigiously but it also expresses a kaleidoscopic abundance of 5-HT receptors. The larger of two enteric 5-HT stores is mucosal, biosynthetically dependent upon tryptophan hydroxylase1 (TPH1), and located in EC cells. Mechanical stimuli, nutrients, luminal bacteria, and neurotransmitters such as acetylcholine and norepinephrine are all able to stimulate EC cells. Paracrine actions of 5-HT allow the mucosa to signal to neurons to initiate peristaltic and secretory reflexes as well as to inflammatory cells to promote intestinal inflammation. Endocrine effects of 5-HT allow EC cells to influence distant organs, including bone, liver, and endocrine pancreas. The smaller enteric 5-HT store is biosynthetically dependent upon TPH2 and is located within a small subset of myenteric neurons. 5-HT is responsible for slow excitatory neurotransmission manifested primarily in type II/AH neurons. Importantly, neuronal 5-HT also promotes enteric nervous system (ENS) neurogenesis, both pre- and postnatally, through 5-HT2B and especially 5-HT4 receptors. The early birth of serotonergic neurons allows these cells to function as sculptors of the mature ENS. The inactivation of secreted 5-HT depends on transmembrane transport mediated by a serotonin transporter (SERT; SLC6A4). The importance of SERT in control of 5-HT's function means that pharmacological inhibition of SERT, as well as gain- or loss-of-function mutations in SLC6A4, can exert profound effects on development and function of the ENS. Extra-enteric, TPH1-derived 5-HT from yolk sac and placenta promotes neurogenesis before enteric neurons synthesize 5-HT and contribute to ENS patterning. The impressive multi-functional nature of enteric 5-HT has made the precise identification of individual physiological roles difficult and sometimes controversial.


Assuntos
Sistema Nervoso Entérico , Serotonina , Sistema Nervoso Entérico/fisiologia , Motilidade Gastrointestinal/fisiologia , Intestino Delgado , Neurônios , Serotonina/farmacologia , Humanos
5.
mBio ; 13(6): e0312022, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468883

RESUMO

Varicella was troublesome when varicella vaccine (vOka) was licensed in the United States. Varicella's yearly death toll was ~100, indirect costs were massive, and varicella threatened immunocompromised children. Since licensure, varicella has almost disappeared; nevertheless, vOka attenuation has lacked a molecular explanation. Sadaoka et al. (T. Sadaoka, D. P. Depledge, L. Rajbhandari, J. Breuer, et al., mBio 13:e0186422, 2022, https://doi.org/10.1128/mbio.01864-22), however, have now identified 6 core single nucleotide polymorphisms (SNPs), which singly or in combination may contribute to VOka attenuation; moreover, they found a predominant variant allele of vOka encoding the viral glycoprotein gB that results in glutamine instead of arginine at amino acid 699. This change impairs fusion activity and the ability of varicella-zoster virus (VZV) to infect human neurons from axon terminals. Molecular virological studies of vOka are reassuring in suggesting that reversion to virulence is unlikely and should also help assuage current fears about VZV vaccination and alleviate unanticipated future problems. The impressive work of Sadaoka et al. thus represents an auspicious advance in knowledge.


Assuntos
Varicela , Vacinas Virais , Criança , Humanos , Estados Unidos , Vacina contra Varicela , Herpesvirus Humano 3 , Vacinas Atenuadas , Antígenos Virais
6.
Neuron ; 110(14): 2199-2201, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35863315

RESUMO

Serotonin is a multifunctional signaling molecule. In this issue of Neuron, Zhu et al. (2022) demonstrate, surprisingly, that despite the diminutive size of the enteric serotonin neuronal pool, it is serotonin from these neurons that drives proliferation of colorectal cancer stem cells.


Assuntos
Neoplasias Colorretais , Neurônios Serotoninérgicos , Humanos , Neurônios Serotoninérgicos/fisiologia , Serotonina/fisiologia
7.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891418

RESUMO

We encountered two cases of varicella occurring in newborn infants. Because the time between birth and the onset of the illness was much shorter than the varicella incubation period, the cases suggested that the infection was maternally acquired, despite the fact that neither mother experienced clinical zoster. Thus, we tested the hypothesis that VZV frequently reactivates asymptomatically in late pregnancy. The appearance of DNA-encoding VZV genes in saliva was used as an indicator of reactivation. Saliva was collected from 5 women in the first and 14 women in the third trimesters of pregnancy and analyzed at two different sites, at one using nested PCR and at the other using quantitative PCR (qPCR). No VZV DNA was detected at either site in the saliva of women during the first trimester; however, VZV DNA was detected in the majority of samples of saliva (11/12 examined by nested PCR; 7/10 examined by qPCR) during the third trimester. These observations suggest that VZV reactivation occurs commonly during the third trimester of pregnancy. It is possible that this phenomenon, which remains in most patients below the clinical threshold, provides an endogenous boost to immunity and, thus, is beneficial.


Assuntos
Varicela , Herpes Zoster , DNA Viral/análise , DNA Viral/genética , Feminino , Herpesvirus Humano 3/genética , Humanos , Recém-Nascido , Gravidez , Reação em Cadeia da Polimerase em Tempo Real
9.
Am J Physiol Gastrointest Liver Physiol ; 322(6): G583-G597, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35319286

RESUMO

Intestinal ganglionic cells in the adult enteric nervous system (ENS) are continually exposed to stimuli from the surrounding microenvironment and need at times to respond to disturbed homeostasis following acute intestinal injury. The kinase DCLK1 and intestinal Dclk1-positive cells have been reported to contribute to intestinal regeneration. Although Dclk1-positive cells are present in adult enteric ganglia, their cellular identity and response to acute injury have not been investigated in detail. Here, we reveal the presence of distinct Dclk1-tdTom+/CD49b+ glial-like and Dclk1-tdTom+/CD49b- neuronal cell types in adult myenteric ganglia. These ganglionic cells demonstrate distinct patterns of tracing over time yet show a similar expansion in response to elevated serotonergic signaling. Interestingly, Dclk1-tdTom+ glial-like and neuronal cell types appear resistant to acute irradiation injury-mediated cell death. Moreover, Dclk1-tdTom+/CD49b+ glial-like cells show prominent changes in gene expression profiles induced by injury, in contrast to Dclk1-tdTom+/CD49b- neuronal cell types. Finally, subsets of Dclk1-tdTom+/CD49b+ glial-like cells demonstrate prominent overlap with Nestin and p75NTR and strong responses to elevated serotonergic signaling or acute injury. These findings, together with their role in early development and their neural crest-like gene expression signature, suggest the presence of reserve progenitor cells in the adult Dclk1 glial cell lineage.NEW & NOTEWORTHY The kinase DCLK1 identifies glial-like and neuronal cell types in adult murine enteric ganglia, which resist acute injury-mediated cell death yet differ in their cellular response to injury. Interestingly, Dclk1-labeled glial-like cells show prominent transcriptional changes in response to injury and harbor features reminiscent of previously described enteric neural precursor cells. Our data thus add to recently emerging evidence of reserve cellular plasticity in the adult enteric nervous system.


Assuntos
Sistema Nervoso Entérico , Células-Tronco Neurais , Animais , Sistema Nervoso Entérico/fisiologia , Integrina alfa2/metabolismo , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Neurônios/metabolismo
11.
J Infect Dis ; 224(12 Suppl 2): S387-S397, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34590140

RESUMO

Michiaki Takahashi developed the live attenuated varicella vaccine in 1974 . This was the first, and is still the only, herpesvirus vaccine. Early studies showed promise, but the vaccine was rigorously tested on immunosuppressed patients because of their high risk of fatal varicella; vaccination proved to be lifesaving. Subsequently, the vaccine was found to be safe and effective in healthy children. Eventually, varicella vaccine became a component of measles mumps rubella vaccine, 2 doses of which are administered in the USA to ~90% of children. The incidence of varicella has dropped dramatically in the USA since vaccine-licensure in 1995. Varicella vaccine is also associated with a decreased incidence of zoster and is protective for susceptible adults. Today, immunocompromised individuals are protected against varicella due to vaccine-induced herd immunity. Latent infection with varicella zoster virus occurs after vaccination; however, the vaccine strain is impaired for its ability to reactivate.


Assuntos
Vacina contra Varicela/administração & dosagem , Varicela/prevenção & controle , Vacina contra Herpes Zoster/administração & dosagem , Herpes Zoster/prevenção & controle , Herpesvirus Humano 3/efeitos dos fármacos , Vacinas Atenuadas/administração & dosagem , Antígenos Virais , Herpesvirus Humano 3/imunologia , Humanos , Incidência , Vacina contra Sarampo-Caxumba-Rubéola , Estados Unidos/epidemiologia , Vacinação , Vacinas Combinadas
12.
J Clin Invest ; 131(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523615

RESUMO

Modern research on gastrointestinal behavior has revealed it to be a highly complex bidirectional process in which the gut sends signals to the brain, via spinal and vagal visceral afferent pathways, and receives sympathetic and parasympathetic inputs. Concomitantly, the enteric nervous system within the bowel, which contains intrinsic primary afferent neurons, interneurons, and motor neurons, also senses the enteric environment and controls the detailed patterns of intestinal motility and secretion. The vast microbiome that is resident within the enteric lumen is yet another contributor, not only to gut behavior, but to the bidirectional signaling process, so that the existence of a microbiota-gut-brain "connectome" has become apparent. The interaction between the microbiota, the bowel, and the brain now appears to be neither a top-down nor a bottom-up process. Instead, it is an ongoing, tripartite conversation, the outline of which is beginning to emerge and is the subject of this Review. We emphasize aspects of the exponentially increasing knowledge of the microbiota-gut-brain "connectome" and focus attention on the roles that serotonin, Toll-like receptors, and macrophages play in signaling as exemplars of potentially generalizable mechanisms.


Assuntos
Encéfalo/fisiologia , Microbioma Gastrointestinal/fisiologia , Animais , Conectoma , Sistema Nervoso Entérico/fisiologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/fisiologia , Humanos , Macrófagos/imunologia , Modelos Neurológicos , Vias Neurais/fisiologia
14.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720042

RESUMO

The enteric nervous system mediates reflexes independently of the brain and spinal cord and transmits signals bidirectionally between the gut and the brain. Hirschsprung disease and chronic intestinal pseudo-obstruction (CIPO) and pediatric CIPO are examples of congenital defects that impair gastrointestinal motility. In this issue of the JCI, Thuy-Linh Le et al. analyzed eight patients with defects in tissue that arose from the neural crest. The patients carried homozygous or heterozygous variants in ERBB3 or ERBB2, which encode transmembrane epidermal growth factor receptors that bind neuroregulin 1 (NRG1). Notably, the genetic variants resulted in loss of function with decreased expression or aberrant phosphorylation of the ERBB3/ERBB2 receptors. Experiments using mice revealed that Erbb3 and Erbb2 were expressed in enteric neuronal progenitor cells. This study is an outstanding example of descriptive observation that begs for mechanistic exploration to reveal precisely how the NRG1/ERBB3/ERBB2 pathway influences ENS development.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Animais , Criança , Doença de Hirschsprung/genética , Humanos , Camundongos , Neuregulina-1/genética , Neuregulina-1/metabolismo , Fosforilação , Receptor ErbB-2/genética , Receptor ErbB-3/genética
15.
Neurogastroenterol Motil ; 33(8): e14100, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33655600

RESUMO

BACKGROUND: Intrinsic primary afferent neurons (IPANs) enable the gut to manifest reflexes in the absence of CNS input. PKG1α is selectively expressed in a subset of neurons in dorsal root ganglia (DRG) and has been linked to nociception and long-term hyperexcitability. METHODS: We used immunoblotting, immunocytochemistry, and in vitro assays of IPAN-dependent enteric functions to test hypotheses that subsets of primary neurons of the ENS and DRG share a reliance on PKG1α expression. KEY RESULTS: PKG1α immunoreactivity was demonstrated in immunoblots from isolated myenteric ganglia. PKG1α, but not PKG1ß, immunoreactivity, was coincident with that of neuronal markers (HuC/D; ß3-tubulin) in both enteric plexuses. PKG1α immunoreactivity also co-localized with the immunoreactivities of the IPAN markers, calbindin (100%; myenteric plexus) and cytoplasmic NeuN (98 ± 1% submucosal plexus). CGRP-immunoreactive DRG neurons, identified as visceral afferents by retrograde transport, were PKG1α-immunoreactive. We used intraluminal cholera toxin to determine whether PKG1α was necessary to enable stimulation of the mucosa to activate Fos in enteric neurons. Tetrodotoxin (1.0 µM), low Ca2+ /high Mg2+ media, and the PKG inhibitor, N46 (100 µM), all inhibited Fos activation in myenteric neurons. N46 also concentration dependently inhibited peristaltic reflexes in isolated preparations of distal colon (IC50  = 83.3 ± 1.3 µM). CONCLUSIONS & INFERENCES: These data suggest that PKG1α is present and functionally important in IPANs and visceral afferent nociceptive neurons.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Sistema Nervoso Entérico/metabolismo , Neurônios Aferentes/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Feminino , Motilidade Gastrointestinal/fisiologia , Cobaias , Intestinos/metabolismo , Masculino , Plexo Mientérico/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
16.
Pharmacol Rev ; 73(1): 310-520, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33370241

RESUMO

5-HT receptors expressed throughout the human body are targets for established therapeutics and various drugs in development. Their diversity of structure and function reflects the important role 5-HT receptors play in physiologic and pathophysiological processes. The present review offers a framework for the official receptor nomenclature and a detailed understanding of each of the 14 5-HT receptor subtypes, their roles in the systems of the body, and, where appropriate, the (potential) utility of therapeutics targeting these receptors. SIGNIFICANCE STATEMENT: This review provides a comprehensive account of the classification and function of 5-hydroxytryptamine receptors, including how they are targeted for therapeutic benefit.


Assuntos
Farmacologia Clínica , Serotonina , Humanos , Ligantes , Receptores de Serotonina
17.
J Comp Neurol ; 528(14): 2420-2444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32154930

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) is expressed in the brain and is neuroprotective. We have previously shown that CDNF is also expressed in the bowel and that its absence leads to degeneration and autophagy in the enteric nervous system (ENS), particularly in the submucosal plexus. We now demonstrate that enteric CDNF immunoreactivity is restricted to neurons (submucosal > myenteric) and is not seen in glia, interstitial cells of Cajal, or smooth muscle. Expression of CDNF, moreover, is essential for the normal development and survival of enteric dopaminergic neurons; thus, expression of the dopaminergic neuronal markers, dopamine, tyrosine hydroxylase, and dopamine transporter are deficient in the ileum of Cdnf -/- mice. The normal age-related decline in proportions of submucosal dopaminergic neurons is exacerbated in Cdnf -/- animals. The defect in Cdnf -/- animals is not dopamine-restricted; proportions of other submucosal neurons (NOS-, GABA-, and CGRP-expressing), are also deficient. The deficits in submucosal neurons are reflected functionally in delayed gastric emptying, slowed colonic motility, and prolonged total gastrointestinal transit. CDNF is expressed selectively in isolated enteric neural crest-derived cells (ENCDC), which also express the dopamine-related transcription factor Foxa2. Addition of CDNF to ENCDC promotes development of dopaminergic neurons; moreover, survival of these neurons becomes CDNF-dependent after exposure to bone morphogenetic protein 4. The effects of neither glial cell-derived neurotrophic factor (GDNF) nor serotonin are additive with CDNF. We suggest that CDNF plays a critical role in development and long-term maintenance of dopaminergic and other sets of submucosal neurons.


Assuntos
Sistema Nervoso Entérico/metabolismo , Trânsito Gastrointestinal/fisiologia , Fatores de Crescimento Neural/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Sistema Nervoso Entérico/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Neurônios/citologia
18.
Acta Physiol (Oxf) ; 228(1): e13331, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31179607
19.
Neurobiol Dis ; 134: 104696, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31783118

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) is neuroprotective for nigrostriatal dopamine neurons and restores dopaminergic function in animal models of Parkinson's disease (PD). To understand the role of CDNF in mammals, we generated CDNF knockout mice (Cdnf-/-), which are viable, fertile, and have a normal life-span. Surprisingly, an age-dependent loss of enteric neurons occurs selectively in the submucosal but not in the myenteric plexus. This neuronal loss is a consequence not of increased apoptosis but of neurodegeneration and autophagy. Quantitatively, the neurodegeneration and autophagy found in the submucosal plexus in duodenum, ileum and colon of the Cdnf-/- mouse are much greater than in those of Cdnf+/+ mice. The selective vulnerability of submucosal neurons to the absence of CDNF is reminiscent of the tendency of pathological abnormalities to occur in the submucosal plexus in biopsies of patients with PD. In contrast, the number of substantia nigra dopamine neurons and dopamine and its metabolite concentrations in the striatum are unaltered in Cdnf-/- mice; however, there is an age-dependent deficit in the function of the dopamine system in Cdnf-/- male mice analyzed. This is observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter function, and as increased D-amphetamine-induced dopamine release demonstrating that dopaminergic axon terminal function in the striatum of the Cdnf-/- mouse brain is altered. The deficiencies of Cdnf-/- mice, therefore, are reminiscent of those seen in early stages of Parkinson's disease.


Assuntos
Encéfalo/patologia , Encéfalo/fisiologia , Dopamina/metabolismo , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/fisiopatologia , Fatores de Crescimento Neural/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Animais , Apoptose , Autofagia , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética
20.
Viruses ; 11(6)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159224

RESUMO

Varicella-zoster virus (VZV), an exclusively human herpesvirus, causes chickenpox and establishes a latent infection in ganglia, reactivating decades later to produce zoster and associated neurological complications. An understanding of VZV neurotropism in humans has long been hampered by the lack of an adequate animal model. For example, experimental inoculation of VZV in small animals including guinea pigs and cotton rats results in the infection of ganglia but not a rash. The severe combined immune deficient human (SCID-hu) model allows the study of VZV neurotropism for human neural sub-populations. Simian varicella virus (SVV) infection of rhesus macaques (RM) closely resembles both human primary VZV infection and reactivation, with analyses at early times after infection providing valuable information about the extent of viral replication and the host immune responses. Indeed, a critical role for CD4 T-cell immunity during acute SVV infection as well as reactivation has emerged based on studies using RM. Herein we discuss the results of efforts from different groups to establish an animal model of VZV neurotropism.


Assuntos
Modelos Animais de Doenças , Gânglios/virologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 3/patogenicidade , Tropismo Viral , Animais , Varicela/virologia , Cobaias , Herpes Zoster/virologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Macaca mulatta , Sigmodontinae , Carga Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...