Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360201

RESUMO

The Ebola virus matrix protein VP40 is responsible for the formation of the viral matrix by localizing at the inner leaflet of the human plasma membrane (PM). Various lipid types, including PI(4,5)P2 (i.e. PIP2) and phosphatidylserine (PS), play active roles in this process. Specifically, the negatively charged headgroups of both PIP2 and PS interact with the basic residues of VP40 and stabilize it at the membrane surface, allowing for eventual egress. Phosphatidic acid (PA), resulting from the enzyme phospholipase D (PLD), is also known to play an active role in viral development. In this work, we performed a biophysical and computational analysis to investigate the effects of the presence of PA on the membrane localization and association of VP40. We used coarse-grained molecular dynamics simulations to quantify VP40 hexamer interactions with the inner leaflet of the PM. Analysis of the local distribution of lipids shows enhanced lipid clustering when PA is abundant in the membrane. We observed that PA lipids have a similar role to that of PS lipids in VP40 association due to the geometry and charge. Complementary experiments performed in cell culture demonstrate competition between VP40 and a canonical PA-binding protein for the PM. Also, inhibition of PA synthesis reduced the detectable budding of virus-like particles. These computational and experimental results provide new insights into the early stages of Ebola virus budding and the role that PA lipids have on the VP40-PM association.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Lipídeos/análise
2.
J Lipid Res ; 65(3): 100512, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295986

RESUMO

Ebola virus (EBOV) causes severe hemorrhagic fever in humans and is lethal in a large percentage of those infected. The EBOV matrix protein viral protein 40 kDa (VP40) is a peripheral binding protein that forms a shell beneath the lipid bilayer in virions and virus-like particles (VLPs). VP40 is required for virus assembly and budding from the host cell plasma membrane. VP40 is a dimer that can rearrange into oligomers at the plasma membrane interface, but it is unclear how these structures form and how they are stabilized. We therefore investigated the ability of VP40 to form stable oligomers using in vitro and cellular assays. We characterized two lysine-rich regions in the VP40 C-terminal domain (CTD) that bind phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and play distinct roles in lipid binding and the assembly of the EBOV matrix layer. The extensive analysis of VP40 with and without lipids by hydrogen deuterium exchange mass spectrometry revealed that VP40 oligomers become extremely stable when VP40 binds PI(4,5)P2. The PI(4,5)P2-induced stability of VP40 dimers and oligomers is a critical factor in VP40 oligomerization and release of VLPs from the plasma membrane. The two lysine-rich regions of the VP40 CTD have different roles with respect to interactions with plasma membrane phosphatidylserine (PS) and PI(4,5)P2. CTD region 1 (Lys221, Lys224, and Lys225) interacts with PI(4,5)P2 more favorably than PS and is important for VP40 extent of oligomerization. In contrast, region 2 (Lys270, Lys274, Lys275, and Lys279) mediates VP40 oligomer stability via lipid interactions and has a more prominent role in release of VLPs.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Lisina/metabolismo , Sítios de Ligação , Lipídeos , Ligação Proteica
3.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628766

RESUMO

The emergence and the high transmissibility of the XBB.1.5 and XBB.1.16 subvariants of the SARS-CoV-2 omicron has reignited concerns over the potential impact on vaccine efficacy for these and future variants. We investigated the roles of the XBB.1.5 and XBB.1.16 mutations on the structure of the spike protein's receptor-binding domain (RBD) and its interactions with the host cell receptor ACE2. To bind to ACE2, the RBD must transition from the closed-form to the open-form configuration. We found that the XBB variants have less stable closed-form structures that may make the transition to the open-form easier. We found that the mutations enhance the RBD-ACE2 interactions in XBB.1.16 compared to XBB.1.5. We observed significant structural changes in the loop and motif regions of the RBD, altering well-known antibody-binding sites and potentially rendering primary RBD-specific antibodies ineffective. Our findings elucidate how subtle structural changes and interactions contribute to the subvariants' fitness over their predecessors.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/genética
4.
Int Immunopharmacol ; 111: 109109, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35926269

RESUMO

Marburgvirus (MARV), a member of the Filovirus family, causes severe hemorrhagic fever in humans. Currently, there are no approved vaccines or post exposure treatment methods available against MARV. With the aim of identifying vaccine candidates against MARV, we employ different sequence-based computational methods to predict the MHC-I and MHC-II T-cell epitopes as well as B-cell epitopes for the complete MARV genome. We analyzed the variations in the predicted epitopes among four MARV variants, the Lake Victoria, Angola, Musoke, and Ravn. We used a consensus approach to identify several epitopes, including novel epitopes, and narrowed down the selection based on different parameters such as antigenicity and IC50 values. The selected epitopes can be used in various vaccine constructs that give effective antibody responses. The MHC-I epitope-allele complexes for GP and NP with favorably low IC50 values were investigated using molecular dynamics computations to determine the molecular details of the epitope-allele complexes. This study provides information for further experimental validation of the potential epitopes and the design and development of MARV vaccines.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Vacinas Virais , Alelos , Animais , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/genética , Humanos , Doença do Vírus de Marburg/genética , Marburgvirus/genética
5.
Phys Chem Chem Phys ; 24(16): 9123-9129, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35395667

RESUMO

We computationally investigated the role of the omicron RBD mutations on its structure and interactions with the surrounding domains in the spike trimer as well as with ACE2. Our results suggest that, compared to WT and delta, the mutations in the omicron RBD facilitate a more efficient RBD "down" to "up" conformation as well as ACE2 attachment. These effects, combined with antibody evasion, may have contributed to its dominance over delta.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Humanos , Mutação , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
ACS Sens ; 7(2): 555-563, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35060380

RESUMO

Label-free detection and analysis of proteins in their natural form and their dynamic interactions with substrates at the single-molecule level are important for both fundamental studies and various applications. Herein, we demonstrate a simple potentiometric method to achieve this goal by detecting the native charge of protein in solution by utilizing the principle of single-entity electrochemistry techniques. When a charged protein moves near the vicinity of a floating carbon nanoelectrode connected to a high-impedance voltage meter, the distinct local electrostatic potential changes induced by the transient collision event of protein, also called the "nanoimpact" event, can be captured by the nanoelectrode as a potential probe. This potentiometric method is highly sensitive for charged proteins, and low-molecular-weight proteins less than 10 kDa can be detected in low-salt-concentration electrolytes. By analyzing the shape and magnitude of the recorded time-resolved potential change and its time derivative, we can reveal the charge and motion of the protein in the nonspecific protein-surface interaction event. The charge polarity variations of the proteins at different pH values were also successfully probed. Compared with synthetic spherical nanoparticles, the statistical analysis of many single-molecule nanoimpact events revealed a large variation in the recorded transient potential signals, which may be attributed to the intrinsic protein dynamics and surface charge heterogeneity, as suggested by the finite element method and molecular dynamic simulations.


Assuntos
Nanopartículas , Proteínas , Eletroquímica , Nanotecnologia , Proteínas/química , Eletricidade Estática
7.
J Chem Theory Comput ; 18(1): 516-525, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34874159

RESUMO

There has been an alarming rise in antibacterial resistant infections in recent years due to the widespread use of antibiotics, and there is a dire need for the development of new antibiotics utilizing novel modes of action. Lantibiotics are promising candidates to engage in the fight against resistant strains of bacteria due to their unique modes of action, including interference with cell wall synthesis by binding to lipid II and creating pores in bacterial membranes. In this study, we use atomic-scale molecular dynamics computational studies to compare both the lipid II binding ability and the membrane interactions of five lanthipeptides that are commonly used in antimicrobial research: nisin, Mutacin 1140 (MU1140), gallidermin, NVB302, and NAI107. Among the five peptides investigated, nisin is found to be the most efficient at forming water channels through a membrane, whereas gallidermin and MU1140 are found to be better at binding the lipid II molecules. Nisin's effectiveness in facilitating water transport across the membrane is due to the creation of several different water trajectories along with no significant water delay points along the paths. The shorter peptide deoxyactagardine B (NVB302) was found to not form a water channel. These detailed observations provide insights into the dual mechanisms of the action of lantibiotic peptides and can facilitate the design and development of novel lanthipeptides by strategic placement of different residues.


Assuntos
Antibacterianos , Uridina Difosfato Ácido N-Acetilmurâmico , Antibacterianos/metabolismo , Bactérias/metabolismo , Simulação de Dinâmica Molecular , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
8.
Proteins ; 90(2): 340-350, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34431571

RESUMO

Outbreaks of the Ebola virus (EBOV) continue to occur and while a vaccine and treatment are now available, there remains a dearth of options for those who become sick with EBOV disease. An understanding at the atomic and molecular level of the various steps in the EBOV replication cycle can provide molecular targets for disrupting the virus. An important step in the EBOV replication cycle is the transport of EBOV structural matrix VP40 protein molecules to the plasma membrane inner leaflet, which involves VP40 binding to the host cell's Sec24c protein. Though some VP40 residues involved in the binding are known, the molecular details of VP40-Sec24c binding are not known. We use various molecular computational techniques to investigate the molecular details of how EBOV VP40 binds with the Sec24c complex of the ESCRT-I pathway. We employed different docking programs to identify the VP40-binding site on Sec24c and then performed molecular dynamics simulations to determine the atomic details and binding interactions of the complex. We also investigated how the inter-protein interactions of the complex are affected upon mutations of VP40 amino acids in the Sec24c-binding region. Our results provide a molecular basis for understanding previous coimmunoprecipitation experimental studies. In addition, we found that VP40 can bind to a site on Sec24c that can also bind Sec23 and suggests that VP40 may use the COPII transport mechanism in a manner that may not need the Sec23 protein in order for VP40 to be transported to the plasma membrane.


Assuntos
Ebolavirus/metabolismo , Doença pelo Vírus Ebola/virologia , Proteínas de Transporte Vesicular , Proteínas da Matriz Viral , Humanos , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
9.
Biochem Biophys Res Commun ; 574: 14-19, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425281

RESUMO

Following the initial surges of the Alpha (B.1.1.7) and the Beta (B.1.351) variants, a more infectious Delta variant (B.1.617.2) is now surging, further deepening the health crises caused by the pandemic. The sharp rise in cases attributed to the Delta variant has made it especially disturbing and is a variant of concern. Fortunately, current vaccines offer protection against known variants of concern, including the Delta variant. However, the Delta variant has exhibited some ability to dodge the immune system as it is found that neutralizing antibodies from prior infections or vaccines are less receptive to binding with the Delta spike protein. Here, we investigated the structural changes caused by the mutations in the Delta variant's receptor-binding interface and explored the effects on binding with the ACE2 receptor as well as with neutralizing antibodies. We find that the receptor-binding ß-loop-ß motif adopts an altered but stable conformation causing separation in some of the antibody binding epitopes. Our study shows reduced binding of neutralizing antibodies and provides a possible mechanism for the immune evasion exhibited by the Delta variant.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Evasão da Resposta Imune/imunologia , Mutação/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Aminoácidos/genética , Aminoácidos/imunologia , Aminoácidos/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Sítios de Ligação/genética , Sítios de Ligação/imunologia , COVID-19/metabolismo , COVID-19/virologia , Humanos , Evasão da Resposta Imune/genética , Simulação de Dinâmica Molecular , Mutação/genética , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
10.
Viruses ; 13(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34372582

RESUMO

Ebolavirus (EBOV) is a negative-sense RNA virus that causes severe hemorrhagic fever in humans. The matrix protein VP40 facilitates viral budding by binding to lipids in the host cell plasma membrane and driving the formation of filamentous, pleomorphic virus particles. The C-terminal domain of VP40 contains two highly-conserved cysteine residues at positions 311 and 314, but their role in the viral life cycle is unknown. We therefore investigated the properties of VP40 mutants in which the conserved cysteine residues were replaced with alanine. The C311A mutation significantly increased the affinity of VP40 for membranes containing phosphatidylserine (PS), resulting in the assembly of longer virus-like particles (VLPs) compared to wild-type VP40. The C314A mutation also increased the affinity of VP40 for membranes containing PS, albeit to a lesser degree than C311A. The double mutant behaved in a similar manner to the individual mutants. Computer modeling revealed that both cysteine residues restrain a loop segment containing lysine residues that interact with the plasma membrane, but Cys311 has the dominant role. Accordingly, the C311A mutation increases the flexibility of this membrane-binding loop, changes the profile of hydrogen bonding within VP40 and therefore binds to PS with greater affinity. This is the first evidence that mutations in VP40 can increase its affinity for biological membranes and modify the length of Ebola VLPs. The Cys311 and Cys314 residues therefore play an important role in dynamic interactions at the plasma membrane by modulating the ability of VP40 to bind PS.


Assuntos
Ebolavirus/genética , Proteínas da Matriz Viral/genética , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cisteína/genética , Ebolavirus/metabolismo , Humanos , Lipídeos/fisiologia , Simulação de Dinâmica Molecular , Fosfatidilserinas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Multimerização Proteica , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/ultraestrutura , Vírion/metabolismo , Montagem de Vírus/genética , Liberação de Vírus/genética
11.
J Phys Chem B ; 125(26): 7101-7107, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34110159

RESUMO

The novel coronavirus (SARS-CoV-2) pandemic that started in late 2019 is responsible for hundreds of millions of cases worldwide and millions of fatalities. Though vaccines are available, the virus is mutating to form new strains among which are the variants B.1.1.7 and B.1.351 that demonstrate increased transmissivity and infectivity. In this study, we performed molecular dynamics simulations to explore the role of the mutations in the interaction of the virus spike protein receptor binding domain (RBD) with the host receptor ACE2. We find that the hydrogen bond networks are rearranged in the variants and also that new hydrogen bonds are established between the RBD and ACE2 as a result of mutations. We investigated three variants: the wild-type (WT), B.1.1.7, and B.1.351. We find that the B.1.351 variant (also known as 501Y.V2) shows larger flexibility in the RBD loop segment involving residue K484, yet the RBD-ACE2 complex shows higher stability. Mutations that allow a more flexible interface that can result in a more stable complex may be a factor contributing to the increased infectivity of the mutated variants.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
J Biol Chem ; 296: 100796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019871

RESUMO

Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD-NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD-CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein-protein or lipid-protein interactions to inhibit virus budding.


Assuntos
Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/química , Lipídeos de Membrana/química , Modelos Moleculares , Multimerização Proteica , Proteínas da Matriz Viral/química , Vírion/química , Montagem de Vírus
13.
Sci Rep ; 10(1): 7667, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376973

RESUMO

Lassa virus (LASV), a member of the Arenaviridae, is an ambisense RNA virus that causes severe hemorrhagic fever with a high fatality rate in humans in West and Central Africa. Currently, no FDA approved drugs or vaccines are available for the treatment of LASV fever. The LASV glycoprotein complex (GP) is a promising target for vaccine or drug development. It is situated on the virion envelope and plays key roles in LASV growth, cell tropism, host range, and pathogenicity. In an effort to discover new LASV vaccines, we employ several sequence-based computational prediction tools to identify LASV GP major histocompatibility complex (MHC) class I and II T-cell epitopes. In addition, many sequence- and structure-based computational prediction tools were used to identify LASV GP B-cell epitopes. The predicted T- and B-cell epitopes were further filtered based on the consensus approach that resulted in the identification of thirty new epitopes that have not been previously tested experimentally. Epitope-allele complexes were obtained for selected strongly binding alleles to the MHC-I T-cell epitopes using molecular docking and the complexes were relaxed with molecular dynamics simulations to investigate the interaction and dynamics of the epitope-allele complexes. These predictions provide guidance to the experimental investigations and validation of the epitopes with the potential for stimulating T-cell responses and B-cell antibodies against LASV and allow the design and development of LASV vaccines.


Assuntos
Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Febre Lassa/imunologia , Vírus Lassa/imunologia , Modelos Moleculares , Alelos , Sequência de Aminoácidos , Mapeamento de Epitopos/métodos , Epitopos/genética , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Febre Lassa/prevenção & controle , Vírus Lassa/genética , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Fluxo de Trabalho
14.
Pathogens ; 9(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455873

RESUMO

The Ebola virus (EBOV) harbors seven genes, one of which is the matrix protein eVP40, a peripheral protein that is sufficient to induce the formation of virus-like particles from the host cell plasma membrane. eVP40 can form different structures to fulfil different functions during the viral life cycle, although the structural dynamics of eVP40 that warrant dimer, hexamer, and octamer formation are still poorly understood. eVP40 has two conserved Trp residues at positions 95 and 191. The role of Trp95 has been characterized in depth as it serves as an important residue in eVP40 oligomer formation. To gain insight into the functional role of Trp191 in eVP40, we prepared mutations of Trp191 (W191A or W191F) to determine the effects of mutation on eVP40 plasma membrane localization and budding as well as eVP40 oligomerization. These in vitro and cellular experiments were complemented by molecular dynamics simulations of the wild-type (WT) eVP40 structure versus that of W191A. Taken together, Trp is shown to be a critical amino acid at position 191 as mutation to Ala reduces the ability of VP40 to localize to the plasma membrane inner leaflet and form new virus-like particles. Further, mutation of Trp191 to Ala or Phe shifted the in vitro equilibrium to the octamer form by destabilizing Trp191 interactions with nearby residues. This study has shed new light on the importance of interdomain interactions in stability of the eVP40 structure and the critical nature of timing of eVP40 oligomerization for plasma membrane localization and viral budding.

15.
Viruses ; 12(4)2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344654

RESUMO

Marburg virus (MARV) is a lipid-enveloped negative sense single stranded RNA virus, which can cause a deadly hemorrhagic fever. MARV encodes seven proteins, including VP40 (mVP40), a matrix protein that interacts with the cytoplasmic leaflet of the host cell plasma membrane. VP40 traffics to the plasma membrane inner leaflet, where it assembles to facilitate the budding of viral particles. VP40 is a multifunctional protein that interacts with several host proteins and lipids to complete the viral replication cycle, but many of these host interactions remain unknown or are poorly characterized. In this study, we investigated the role of a hydrophobic loop region in the carboxy-terminal domain (CTD) of mVP40 that shares sequence similarity with the CTD of Ebola virus VP40 (eVP40). These conserved hydrophobic residues in eVP40 have been previously shown to be critical to plasma membrane localization and membrane insertion. An array of cellular experiments and confirmatory in vitro work strongly suggests proper orientation and hydrophobic residues (Phe281, Leu283, and Phe286) in the mVP40 CTD are critical to plasma membrane localization. In line with the different functions proposed for eVP40 and mVP40 CTD hydrophobic residues, molecular dynamics simulations demonstrate large flexibility of residues in the EBOV CTD whereas conserved mVP40 hydrophobic residues are more restricted in their flexibility. This study sheds further light on important amino acids and structural features in mVP40 required for its plasma membrane localization as well as differences in the functional role of CTD amino acids in eVP40 and mVP40.


Assuntos
Membrana Celular/metabolismo , Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Aminoácidos/química , Animais , Células COS , Membrana Celular/química , Chlorocebus aethiops , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos , Modelos Moleculares , Imagem Molecular , Conformação Proteica , Transporte Proteico
16.
J Phys Chem B ; 123(43): 9045-9053, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31576755

RESUMO

The Ebola virus (EBOV) is a virulent pathogen that causes severe hemorrhagic fever with a high fatality rate in humans. The EBOV transformer protein VP40 plays crucial roles in viral assembly and budding at the plasma membrane of infected cells. One of VP40's roles is to form the long, flexible, pleomorphic filamentous structural matrix for the virus. Each filament contains three unique interfaces: monomer NTD-NTD to form a dimer, dimer-to-dimer NTD-NTD oligomerization to form a hexamer, and end-to-end hexamer CTD-CTD to build the filament. However, the atomic-level details of conformational flexibility of the VP40 filament are still elusive. In this study, we have performed explicit-solvent, all-atom molecular dynamic simulations to explore the conformational flexibility of the three different interface structures of the filament. Using dynamic network analysis and other calculational methods, we find that the CTD-CTD hexamer interface with weak interdomain amino acid communities is the most flexible, and the NTD-NTD oligomer interface with strong interdomain communities is the least flexible. Our study suggests that the high flexibility of the CTD-CTD interface may be essential for the supple bending of the Ebola filovirus, and such flexibility may present a target for molecular interventions to disrupt the Ebola virus functioning.


Assuntos
Membrana Celular/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Multimerização Proteica , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
17.
Phys Chem Chem Phys ; 21(23): 12530-12539, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31147666

RESUMO

The emergence of antibiotic-resistance is a major concern to global human health and identification of novel antibiotics is critical to mitigate the threat. Mutacin 1140 (MU1140) is a promising antimicrobial lanthipeptide and is effective against Gram-positive bacteria. Like nisin, MU1140 targets and sequesters lipid II and interferes with its function, which results in the inhibition of bacterial cell wall synthesis, and leads to bacteria cell lysis. MU1140 contains a structurally similar thioether cage for binding the lipid II pyrophosphate as for nisin. In addition to lipid II binding, nisin is known to form membrane pores. Membrane pore formation and membrane disruption is a common mode of action for many antimicrobial peptides, including gallidermin, a lantibiotic peptide with similar structural features as MU1140. However, whether and how MU1140 and its variants can form permeable membrane pores remains to be demonstrated. In this work, we explored the potential mechanisms of membrane pore formation by performing molecular simulations of the MU1140-lipid II complex in the bacterial membrane. Our results suggest that MU1140-lipid II complexes are able to form water permeating membrane pores. We find that a single chain of MU1140 complexed with lipid II in the transmembrane region can permeate water molecules across the membrane via a single-file water transport mechanism. The ordering of the water molecules in the single-file chain region as well as the diffusion behavior is similar to those observed in other biological water channels. Multiple complexes of MU1140-lipid II in the membrane showed enhanced permeability for the water molecules, as well as a noticeable membrane distortion and lipid relocation, suggesting that a higher concentration of MU1140 assembly in the membrane can cause significant disruption of the bacterial membrane. These investigations provide an atomistic level insight into a novel mode of action for MU1140 that can be exploited to develop optimized peptide variants with improved antimicrobial properties.


Assuntos
Bacteriocinas/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Simulação de Dinâmica Molecular , Peptídeos/farmacologia , Bacteriocinas/química , Membrana Celular/efeitos dos fármacos , Bactérias Gram-Positivas/citologia , Lipídeos/química , Lipídeos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Água/química
18.
Methods Mol Biol ; 1958: 297-311, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945225

RESUMO

A relatively recently discovered class of proteins known as transformer proteins undergo large-scale conformational conversions that change their supersecondary structure. These structural transformations lead to different configurations that perform different functions. We describe computational methods using molecular dynamics simulations that allow the determination of the specific amino acids that facilitate the conformational transformations. These investigations provide guidance on the location and type of amino acid mutations that can either enhance or inhibit the structural transitions that allow transformer proteins to perform multiple functions.


Assuntos
Motivos de Aminoácidos , Biologia Computacional/métodos , Proteínas/química , Sequência de Aminoácidos/genética , Simulação de Dinâmica Molecular , Mutação/genética , Multimerização Proteica , Proteínas/genética
19.
Phys Chem Chem Phys ; 21(10): 5578-5585, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30785432

RESUMO

The Ebola virus (EBOV) is a filamentous lipid-enveloped virus that causes severe hemorrhagic fever with a high fatality rate in humans. The EBOV encodes a glycoprotein that when cleaved, produces the delta peptide. Experimental evidence suggests that the delta peptide functions as a viroporin that enhances virus particle release through the host cell membrane. However, the viroporin forming mechanism of the delta peptide is still not well understood. Guided by experimental information, we have computationally investigated the pore formation by different oligomers of the delta peptide. We have performed all-atom molecular dynamics (MD) simulations in an explicit membrane environment to investigate the pore-forming mechanism and stability of the pores. Our results suggest that the delta peptide forms stable pentameric pores. In addition, the pore is selective with respect to chloride ions, and the disulfide bond formed between Cys-29 and Cys-38 in the C-terminal of the peptide is essential for the pore stabilization and ion permeation. Our study provides helpful information on the pore-forming mechanism of filovirus delta peptides and such structural information can be important in designing and developing molecular modulators that target the delta peptide pore and disrupt the pathology of the Ebola virus.


Assuntos
Ebolavirus , Internalização do Vírus , Ebolavirus/química , Ebolavirus/metabolismo , Canais Iônicos/metabolismo , Membranas , Simulação de Dinâmica Molecular , Proteínas Virais , Vírion
20.
Sci Rep ; 8(1): 9776, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950600

RESUMO

The Ebola filovirus causes severe hemorrhagic fever with a high fatality rate in humans. The primary structural matrix protein VP40 displays transformer-protein characteristics and exists in different conformational and oligomeric states. VP40 plays crucial roles in viral assembly and budding at the plasma membrane of the infected cells and is capable of forming virus-like particles without the need for other Ebola proteins. However, no experimental three-dimensional structure for any filovirus VP40 cylindrical assembly matrix is currently available. Here, we use a protein-protein docking approach to develop cylindrical assembly models for an Ebola virion and also for a smaller structural matrix that does not contain genetic material. These models match well with the 2D averages of cryo-electron tomograms of the authentic virion. We also used all-atom molecular dynamics simulations to investigate the stability and dynamics of the cylindrical models and the interactions between the side-by-side hexamers to determine the amino acid residues that are especially important for stabilizing the hexamers in the cylindrical ring configuration matrix assembly. Our models provide helpful information to better understand the assembly processes of filoviruses and such structural studies may also lead to the design and development of antiviral drugs.


Assuntos
Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Nucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Nucleoproteínas/química , Domínios Proteicos , Proteínas do Core Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...