Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virchows Arch ; 478(5): 851-863, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33170334

RESUMO

Microsatellite instability (MSI) is present in 15-20% of primary colorectal cancers. MSI status is assessed to detect Lynch syndrome, guide adjuvant chemotherapy, determine prognosis, and use as a companion test for checkpoint blockade inhibitors. Traditionally, MSI status is determined by immunohistochemistry or molecular methods. The Idylla™ MSI Assay is a fully automated molecular method (including automated result interpretation), using seven novel MSI biomarkers (ACVR2A, BTBD7, DIDO1, MRE11, RYR3, SEC31A, SULF2) and not requiring matched normal tissue. In this real-world global study, 44 clinical centers performed Idylla™ testing on a total of 1301 archived colorectal cancer formalin-fixed, paraffin-embedded (FFPE) tissue sections and compared Idylla™ results against available results from routine diagnostic testing in those sites. MSI mutations detected with the Idylla™ MSI Assay were equally distributed over the seven biomarkers, and 84.48% of the MSI-high samples had ≥ 5 mutated biomarkers, while 98.25% of the microsatellite-stable samples had zero mutated biomarkers. The concordance level between the Idylla™ MSI Assay and immunohistochemistry was 96.39% (988/1025); 17/37 discordant samples were found to be concordant when a third method was used. Compared with routine molecular methods, the concordance level was 98.01% (789/805); third-method analysis found concordance for 8/16 discordant samples. The failure rate of the Idylla™ MSI Assay (0.23%; 3/1301) was lower than that of referenced immunohistochemistry (4.37%; 47/1075) or molecular assays (0.86%; 7/812). In conclusion, lower failure rates and high concordance levels were found between the Idylla™ MSI Assay and routine tests.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/química , Neoplasias Colorretais/genética , Análise Mutacional de DNA , Imuno-Histoquímica , Instabilidade de Microssatélites , Mutação , Inclusão em Parafina , Fixação de Tecidos , Automação Laboratorial , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Fixadores , Formaldeído , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
2.
Cell Rep ; 29(12): 4127-4143.e8, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851938

RESUMO

The pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription. Sirt6+/- results in significantly reduced PPARα-induced ß-oxidation and its metabolites and reduced alanine and lactate levels, while inducing pyruvate oxidation. Reciprocally, starved SIRT6 transgenic mice show increased pyruvate, acetylcarnitine, and glycerol levels and significantly induce ß-oxidation genes in a PPARα-dependent manner. Furthermore, SIRT6 mediates PPARα inhibition of SREBP-dependent cholesterol and triglyceride synthesis. Mechanistically, SIRT6 binds PPARα coactivator NCOA2 and decreases liver NCOA2 K780 acetylation, which stimulates its activation of PPARα in a SIRT6-dependent manner. These coordinated SIRT6 activities lead to regulation of whole-body respiratory exchange ratio and liver fat content, revealing the interactions whereby SIRT6 synchronizes various metabolic pathways, and suggest a mechanism by which SIRT6 maintains healthy liver.


Assuntos
Fígado/metabolismo , PPAR alfa/metabolismo , Sirtuínas/metabolismo , Acetilação , Animais , Western Blotting , Células Cultivadas , Células HEK293 , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Transgênicos , Coativador 2 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/metabolismo , Oxirredução , PPAR alfa/genética , Sirtuínas/genética
3.
Carcinogenesis ; 37(2): 108-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26717993

RESUMO

SIRT6, a member of the mammalian sirtuins family, functions as a mono-ADP-ribosyl transferase and NAD(+)-dependent deacylase of both acetyl groups and long-chain fatty acyl groups. SIRT6 regulates diverse cellular functions such as transcription, genome stability, telomere integrity, DNA repair, inflammation and metabolic related diseases such as diabetes, obesity and cancer. In this review, we will discuss the implication of SIRT6 in the biology of cancer and the relevance to organism homeostasis and lifespan.


Assuntos
Carcinogênese , Longevidade/fisiologia , Neoplasias/fisiopatologia , Sirtuínas/fisiologia , Animais , Homeostase/fisiologia , Humanos
4.
Biogerontology ; 14(6): 629-39, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24213807

RESUMO

Sirtuins are NAD(+) dependent deacylases enzymes. There are seven mammalian sirtuins, SIRT1-SIRT7, which are localized to different cellular compartments and are capable of diverse catalytic activities. SIRT6 is a key regulator of healthy ageing. In the past decade our understanding of SIRT6 significantly increased in many different aspects. We know its cellular localization, catalytic activities, substrates and the pathways it is involved in. This review discusses the recent discoveries regarding the SIRT6 enzyme.


Assuntos
Envelhecimento/metabolismo , Sirtuínas/metabolismo , Acetilação , Fatores Etários , Envelhecimento/genética , Animais , Catálise , Reparo do DNA , Regulação Enzimológica da Expressão Gênica , Instabilidade Genômica , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Sirtuínas/química , Sirtuínas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...