Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(28): 33838-33847, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418753

RESUMO

Van der Waals heterostructures (vdWHSs) enable the fabrication of complex electronic devices based on two-dimensional (2D) materials. Ideally, these vdWHSs should be fabricated in a scalable and repeatable way and only in the specific areas of the substrate to lower the number of technological operations inducing defects and impurities. Here, we present a method of selective fabrication of vdWHSs via chemical vapor deposition by electron-beam (EB) irradiation. We distinguish two growth modes: positive (2D materials nucleate on the irradiated regions) on graphene and tungsten disulfide (WS2) substrates, and negative (2D materials do not nucleate on the irradiated regions) on the graphene substrate. The growth mode is controlled by limiting the air exposure of the irradiated substrate and the time between irradiation and growth. We conducted Raman mapping, Kelvin-probe force microscopy, X-ray photoelectron spectroscopy, and density-functional theory modeling studies to investigate the selective growth mechanism. We conclude that the selective growth is explained by the competition of three effects: EB-induced defects, adsorption of carbon species, and electrostatic interaction. The method here is a critical step toward the industry-scale fabrication of 2D-materials-based devices.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35849724

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are increasingly investigated for applications such as optoelectronic memories, artificial neurons, sensors, and others that require storing photogenerated signals for an extended period. In this work, we report an environment- and gate voltage-dependent photocurrent modulation method of TMD monolayer-based devices (WS2 and MoS2). To achieve this, we introduce structural defects using mild argon-oxygen plasma treatment. The treatment leads to an extraordinary over 150-fold enhancement of the photocurrent in vacuum along with an increase in the relaxation time. A significant environmental and electrostatic dependence of the photocurrent signal is observed. We claim that the effect is a combined result of atomic vacancy introduction and oxide formation, strengthened by optimal wavelength choice for the modified surface. We believe that this work contributes to paving the way for tunable 2D TMD optoelectronic applications.

3.
Materials (Basel) ; 15(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161116

RESUMO

This article presents an attempt to determine the effect of the MXene phase addition and its decomposition during sintering with the use of the spark plasma sintering method on mechanical properties and residual stress of silicon carbide based composites. For this purpose, the unreinforced silicon carbide sinter and the silicon carbide composite with the addition of 2 wt.% of Ti3C2Tx were tested. The results showed a significant increase of fracture toughness and hardness for composite, respectively 36% and 13%. The numerical study involving this novel method of modelling shows the presence of a complex state of stress in the material, which is related to the anisotropic properties of graphitic carbon structures formed during sintering. An attempt to determine the actual values of residual stress in the tested materials using Raman spectroscopy was also made. These tests showed a good correlation with the constructed numerical model and confirmed the presence of a complex state of residual stress.

4.
Materials (Basel) ; 13(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255303

RESUMO

We report a surfactant-free exfoliation method of WS2 flakes combined with a vacuum filtration method to fabricate thin (<50 nm) WS2 films, that can be transferred on any arbitrary substrate. Films are composed of thin (<4 nm) single flakes, forming a large size uniform film, verified by AFM and SEM. Using statistical phonons investigation, we demonstrate structural quality and uniformity of the film sample and we provide first-order temperature coefficient χ, which shows linear dependence over 300-450 K temperature range. Electrical measurements show film sheet resistance RS = 48 MΩ/Υ and also reveal two energy band gaps related to the intrinsic architecture of the thin film. Finally, we show that optical transmission/absorption is rich above the bandgap exhibiting several excitonic resonances, and nearly feature-less below the bandgap.

5.
ACS Appl Mater Interfaces ; 12(40): 45101-45110, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32930568

RESUMO

In this work, we report the impact of substrate type on the morphological and structural properties of molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD). MoS2 synthesized on a three-dimensional (3D) substrate, that is, SiO2, in response to the change of the thermodynamic conditions yielded different grain morphologies, including triangles, truncated triangles, and circles. Simultaneously, MoS2 on graphene is highly immune to the modifications of the growth conditions, forming triangular crystals only. We explain the differences between MoS2 on SiO2 and graphene by the different surface diffusion mechanisms, namely, hopping and gas-molecule-collision-like mechanisms, respectively. As a result, we observe the formation of thermodynamically favorable nuclei shapes on graphene, while on SiO2, a full spectrum of domain shapes can be achieved. Additionally, graphene withstands the growth process well, with only slight changes in strain and doping. Furthermore, by the application of graphene as a growth substrate, we realize van der Waals epitaxy and achieve strain-free growth, as suggested by the photoluminescence (PL) studies. We indicate that PL, contrary to Raman spectroscopy, enables us to arbitrarily determine the strain levels in MoS2.

6.
Sci Rep ; 9(1): 13338, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527651

RESUMO

A deep understanding of the thermal properties of 2D materials is crucial to their implementation in electronic and optoelectronic devices. In this study, we investigated the macroscopic in-plane thermal conductivity (κ) and thermal interface conductance (g) of large-area (mm2) thin film made from MoS2 nanoflakes via liquid exfoliation and deposited on Si/SiO2 substrate. We found κ and g to be 1.5 W/mK and 0.23 MW/m2K, respectively. These values are much lower than those of single flakes. This difference shows the effects of interconnections between individual flakes on macroscopic thin film parameters. The properties of a Gaussian laser beam and statistical optothermal Raman mapping were used to obtain sample parameters and significantly improve measurement accuracy. This work demonstrates how to address crucial stability issues in light-sensitive materials and can be used to understand heat management in MoS2 and other 2D flake-based thin films.

7.
Phys Chem Chem Phys ; 20(22): 15486-15495, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29808197

RESUMO

In this paper, we report the results of Raman measurements on various molybdenum disulfide (MoS2) nanostructures grown by the chemical vapor deposition (CVD) method on a typical Si/SiO2 substrate. The phonon properties investigated include the positions, widths, and intensities of the E2g and A1g modes and the derivative of the mode positions with respect to the temperature in the 300-460 K range. Our results give new insight into changes in phonon energies in response to different disturbances and show that changes induced by the temperature are similar to the changes induced by stress, making these two factors hardly resolvable in the hωA1g-hωE2g coordinate system. We prove that all our samples are weakly coupled to the substrate; thus, the presented results almost purely illustrate the effect of the temperature and thickness. The much stronger coupling to the substrate, however, can explain the high variation in the data reported in the literature. The statistical approach applied makes our results highly reliable and allows proper uncertainty assessment of the obtained results, which is helpful when comparing our results to the results reported by other authors.

8.
Sci Rep ; 5: 12422, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26179785

RESUMO

We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...