Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 21(1): 66, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772389

RESUMO

BACKGROUND: Stabilization of freeze-dried lactic acid bacteria during long-term storage is challenging for the food industry. Water activity of the lyophilizates is clearly related to the water availability and maintaining a low aw during storage allows to increase bacteria viability. The aim of this study was to achieve a low water activity after freeze-drying and subsequently during long-term storage through the design of a lyoprotectant. Indeed, for the same water content as sucrose (commonly used lyoprotectant), water activity is lower for some components such as whey, micellar casein or inulin. We hypothesized that the addition of these components in a lyoprotectant, with a higher bound water content than sucrose would improve lactobacilli strains survival to long-term storage. Therefore, in this study, 5% whey (w/v), 5% micellar casein (w/v) or 5% inulin (w/v) were added to a 5% sucrose solution (w/v) and compared with a lyoprotectant only composed of 5% sucrose (w/v). Protective effect of the four lyoprotectants was assessed measuring Lactiplantibacillus plantarum CNCM I-4459 survival and water activity after freeze-drying and during 9 months storage at 25 °C. RESULTS: The addition whey and inulin were not effective in increasing Lactiplantibacillus plantarum CNCM I-4459 survival to long-term-storage (4 log reduction at 9 months storage). However, the addition of micellar casein to sucrose increased drastically the protective effect of the lyoprotectant (3.6 log i.e. 0.4 log reduction at 9 months storage). Comparing to a lyoprotectant containing whey or inulin, a lyoprotectant containing micellar casein resulted in a lower water activity after freeze-drying and its maintenance during storage (0.13 ± 0.05). CONCLUSIONS: The addition of micellar casein to a sucrose solution, contrary to the addition of whey and inulin, resulted in a higher bacterial viability to long-term storage. Indeed, for the same water content as the others lyoprotectants, a significant lower water activity was obtained with micellar casein during storage. Probably due to high bound water content of micellar casein, less water could be available for chemical degradation reactions, responsible for bacterial damages during long-term storage. Therefore, the addition of this component to a sucrose solution could be an effective strategy for dried bacteria stabilization during long-term storage.


Assuntos
Lactobacillus , Sacarose , Liofilização , Viabilidade Microbiana , Soro do Leite
2.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202105

RESUMO

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.

3.
Microb Biotechnol ; 14(4): 1445-1461, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33739621

RESUMO

Although mechanisms involved in response of Saccharomyces cerevisiae to osmotic challenge are well described for low and sudden stresses, little is known about how cells respond to a gradual increase of the osmotic pressure (reduced water activity; aw ) over several generations as it could encounter during drying in nature or in food processes. Using glycerol as a stressor, we propagated S. cerevisiae through a ramp of the osmotic pressure (up to high molar concentrations to achieve testing-to-destruction) at the rate of 1.5 MPa day-1 from 1.38 to 58.5 MPa (0.990-0.635 aw ). Cultivability (measured at 1.38 MPa and at the harvest osmotic pressure) and glucose consumption compared with the corresponding sudden stress showed that yeasts were able to grow until about 10.5 MPa (0.926 aw ) and to survive until about 58.5 MPa, whereas glucose consumption occurred until 13.5 MPa (about 0.915 aw ). Nevertheless, the ramp conferred an advantage since yeasts harvested at 10.5 and 34.5 MPa (0.778 aw ) showed a greater cultivability than glycerol-shocked cells after a subsequent shock at 200 MPa (0.234 aw ) for 2 days. FTIR analysis revealed structural changes in wall and proteins in the range 1.38-10.5 MPa, which would be likely to be involved in the resistance at extreme osmotic pressure.


Assuntos
Glicerol , Saccharomyces cerevisiae , Glucose , Pressão Osmótica , Saccharomyces cerevisiae/genética , Água
4.
Food Technol Biotechnol ; 59(4): 443-453, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35136369

RESUMO

RESEARCH BACKGROUND: Freeze-drying is the most widely used dehydration process in the food industry for the stabilization of bacteria. Studies have shown the effectiveness of an acid prestress in increasing the resistance of lactic acid bacteria to freeze-drying. Adaptation of bacteria to an acid stress is based on maintaining the properties of the plasma membrane. Indeed, the fatty acid composition of the membrane of lactic acid bacteria is often changed after an acid prestress. However, few studies have measured membrane fluidity after an acid stress during lactic acid bacterial strain cultivation. EXPERIMENTAL APPROACH: In order to use two pH profiles, the strains Lactococcus lactis NCDO 712 and NZ9000 were cultivated in two media, without any pH control. The two pH profiles obtained were representative of the initial medium composition, medium buffering properties and strain metabolism. Absorbance at 600 nm and pH were measured during bacterial cultivation. Then, the two strains were freeze-dried and their survival rates determined. Membrane fluidity was evaluated by fluorescence anisotropy measurements using a spectrofluorometer. RESULTS AND CONCLUSIONS: Cultivation under more acidic conditions significantly increased the survival during freeze-drying (p<0.05, ANOVA) of both strains. Moreover, in both strains of L. lactis, a more acidic condition during cultivation significantly increased membrane fluidity (p<0.05, ANOVA). Our results revealed that cultivation under such conditions, fluidifies the membrane and allows a better survival during freeze-drying of the two L. lactis strains. A more fluid membrane can facilitate membrane deformation and lateral reorganization of membrane components, critical for the maintenance of cellular integrity during dehydration and rehydration. NOVELTY AND SCIENTIFIC CONTRIBUTION: A better understanding of the involvement of membrane properties, especially of membrane fluidity, in bacterial resistance to dehydration is provided in this study.

5.
Sci Rep ; 10(1): 8265, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427943

RESUMO

Bacterial spores are among the most resistant forms of life on Earth. Their exceptional resistance properties rely on various strategies, among them the core singular structure, organization and hydration. By using elastic incoherent neutron scattering, we probed the dynamics of Bacillus subtilis spores to determine whether core macromolecular motions at the sub-nanosecond timescale could also contribute to their resistance to physical stresses. In addition, in order to better specify the role of the various spore components, we used different mutants lacking essential structure such as the coat (PS4150 mutant), or the calcium dipicolinic acid complex (CaDPA) located in the core (FB122 mutant). PS4150 allows to better probe the core's dynamics, as proteins of the coat represent an important part of spore proteins, and FB122 gives information about the role of the large CaDPA depot for the mobility of core's components. We show that core's macromolecular mobility is not particularly constrained at the sub-nanosecond timescale in spite of its low water content as some dynamical characteristics as force constants are very close to those of vegetative bacteria such as Escherichia coli or to those of fully hydrated proteins. Although the force constants of the coatless mutant are similar to the wild-type's ones, it has lower mean square displacements (MSDs) at high Q showing that core macromolecules are somewhat more constrained than the rest of spore components. However, no behavior reflecting the glassy state regularly evoked in the literature could be drawn from our data. As hydration and macromolecules' mobility are highly correlated, the previous assumption, that core low water content might explain spores' exceptional resistance properties seems unlikely. Thus, we confirm recent theories, suggesting that core water is mostly as free as bulk water and proteins/macromolecules are fully hydrated. The germination of spores leads to a much less stable system with a force constant of 0.1 N/m and MSDs ~2.5 times higher at low Q than in the dormant state. DPA has also an influence on core mobility with a slightly lower force constant for the DPA-less mutant than for the wild-type, and MSDs that are ~ 1.8 times higher on average than for the wild-type at low Q. At high Q, germinated and DPA-less spores were very similar to the wild-type ones, showing that DPA and core compact structure might influence large amplitude motions rather than local dynamics of macromolecules.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Ácidos Picolínicos/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Bacillus subtilis/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Cinética , Mutação , Esporos Bacterianos/química , Esporos Bacterianos/crescimento & desenvolvimento
6.
Int J Food Microbiol ; 295: 1-7, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30772603

RESUMO

Specific treatments combining high temperatures of up to 150 °C and moderate pressure of up to 0.6 MPa have been applied to Bacillus subtilis 168 spores conditioned at different aw levels (between 0.10 and 0.70) corresponding to different residual water contents within the spore core. The spores were treated as a dry powder in a pressurized nitrogen environment or in water/glycerol solutions. These thermodynamic conditions were intended to prevent any water evaporation from the spore core during time/temperature treatments. Our results clearly show that retaining liquid water in the core by applying pressure during the treatment resulted in greater spore destruction (between 2.4 and 4.9 log at 150 °C, 120 s and aw 0.5 in powder) than the destruction observed after the treatment at atmospheric pressure (0.7 log), during which the water rapidly evaporated because its boiling point was reached. Moreover, we found that the water activity level of the spore had a significant impact on spore destruction: the higher the aw level, the greater the spore inactivation. We obtained similar results from spores heat-treated in powder and in water/glycerol solution at the same aw, confirming the strong influence of this parameter. We hypothesized that the increased spore inactivation was related to the well-known thermal sensitivity of vital organic molecules such as proteins, enzymes, and ribosomes in the presence of water.


Assuntos
Bacillus subtilis/fisiologia , Microbiologia de Alimentos/métodos , Temperatura Alta , Viabilidade Microbiana , Pressão , Esporos Bacterianos/fisiologia , Nitrogênio/química , Água/química
7.
Biotechnol Adv ; 37(1): 51-67, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30453013

RESUMO

Under natural conditions yeast cells as well as other microorganisms are regularly subjected to the influence of severe drought, which leads to their serious dehydration. The dry seasons are then changed by rains and there is a restoration of normal water potential inside the cells. To survive such seasonal changes a lot of vegetative microbial cells, which belong to various genera and species, may be able to enter into a state of anhydrobiosis, in which their metabolism is temporarily and reversibly suspended or delayed. This evolutionarily developed adaptation to extreme conditions of the environment is widely used for practical goals - for conservation of microorganisms in collections, for maintenance and long storage of different important strain-producers and for other various biotechnological purposes. This current review presents the most important data obtained mainly in the studies of the structural and functional changes in yeast cells during dehydration. It describes the changes of the main organelles of eukaryotic cells and their role in cell survival in a dry state. The review provides information regarding the role of water in the structure and functions of biological macromolecules and membranes. Some important intracellular protective reactions of eukaryotic organisms, which were revealed in these studies and may have more general importance, are also discussed. The results of the studies of yeast anhydrobiosis summarized in the review show the possibilities of improving the conservation and long-term storage of various microorganisms and of increasing the quality of industrially produced dry microbial preparations.


Assuntos
Biotecnologia , Desidratação/metabolismo , Saccharomyces cerevisiae/metabolismo , Água/metabolismo , Sobrevivência Celular/genética , Microambiente Celular/genética , Saccharomyces cerevisiae/genética
8.
Food Chem ; 277: 698-705, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30502205

RESUMO

In this study, we compared the antioxidant activity of ripe and unripe acerola extracts with synthetic antioxidants (BHA and BHT). This activity was assessed by classical approaches (DPPH and ABTS) and by an in vivo method using yeasts. Acerola extracts contain phenolic compounds and ascorbic acid that exhibit radical scavenger capacity and reducing power. The results obtained with yeasts revealed that the acerola extracts and BHT either acted as antioxidants or presented no activity depending on the nature of the oxidant molecule used. BHA decreased yeast resistance to oxidative treatments and also showed deleterious effects even when oxidative treatments were not applied. The unripe acerola was the most efficient antioxidant in the in vitro experiments but not necessarily in the in vivo assays, showing the weakness of in vitro systems in predicting antioxidant responses for biological purposes. BHA presented cell damaging effects even in the absence of oxidizing reagents.


Assuntos
Antioxidantes/química , Malpighiaceae/química , Extratos Vegetais/química , Saccharomyces cerevisiae/metabolismo , Antioxidantes/síntese química , Antioxidantes/farmacologia , Ácido Ascórbico/química , Ácido Ascórbico/isolamento & purificação , Ácido Ascórbico/farmacologia , Peróxido de Hidrogênio/farmacologia , Malpighiaceae/metabolismo , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vitamina K 3/farmacologia
9.
Front Microbiol ; 9: 475, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593704

RESUMO

Because of the ability of foodborne pathogens to survive in low-moisture foods, their decontamination is an important issue in food protection. This study aimed to clarify some of the cellular mechanisms involved in inactivation of foodborne pathogens after drying and subsequent heating. Individual strains of Salmonella Typhimurium, Salmonella Senftenberg, and Cronobacter sakazakii were mixed into whole milk powder and dried to different water activity levels (0.25 and 0.58); the number of surviving cells was determined after drying and subsequent thermal treatments in closed vessels at 90 and 100°C, for 30 and 120 s. For each condition, the percentage of unculturable cells was estimated and, in parallel, membrane permeability and respiratory activity were estimated by flow cytometry using fluorescent probes. After drying, it was clearly observable that the percentage of unculturable cells was correlated with the percentage of permeabilized cells (responsible for 20-40% of the total inactivated bacteria after drying), and to a lesser degree with the percentage of cells presenting with loss of respiratory activity. In contrast, the percentages of unculturable cells observed after heat treatment were strongly correlated with the loss of respiratory activity and weakly with membrane permeability (for 70-80% of the total inactivated bacteria after heat treatment). We conclude that cell inactivation during drying is closely linked to membrane permeabilization and that heat treatment of dried cells affects principally their respiratory activity. These results legitimize the use of time-temperature scales and allow better understanding of the cellular mechanisms of bacterial death during drying and subsequent heat treatment. These results may also allow better optimization of the decontamination process to ensure food safety by targeting the most deleterious conditions for bacterial cells without denaturing the food product.

10.
Int J Pharm ; 538(1-2): 14-20, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29307771

RESUMO

Faecalibacterium prausnitzii was previously recognized for its intestinal anti-inflammatory activities and it has been shown less abundant in patients with chronic intestinal diseases. However, the main problems encountered in the use of this interesting anaerobic microorganism are firstly its high sensitivity to the oxygen and secondly, its ability to reach the large intestine alive as targeted site. The aim of this study was to investigate the effect of direct compression on the viability of this probiotic strain after different compression pressure and storage using three different excipients (MCC, HPMC and HPMCP). The effect of compression process on cell viability was studied and a strategy was proposed to improve probiotic viability. Results showed that cell viability decreased almost linearly with compression pressure. MCC and HPMC seemed the most favorable carriers and after storage, each tablet exhibited a survival above108 CFU. Storage stability was obtained with a pressure of 201 MPa after 28 days at 25 °C, in anaerobic condition and with 11% relative humidity. Compression after a pre-consolidated stage improved clearly the survival rate due to lower temperature increase and lower shearing force. Thus, direct compression seems to be suitable in producing probiotics tablets with extremely oxygen-sensitive strains, and could provide sufficient protection during storage to expect therapeutic efficiency.


Assuntos
Química Farmacêutica/métodos , Faecalibacterium prausnitzii/fisiologia , Oxigênio/metabolismo , Probióticos/administração & dosagem , Sobrevivência Celular/fisiologia , Composição de Medicamentos/métodos , Excipientes/química , Umidade , Pressão , Comprimidos , Temperatura , Fatores de Tempo
11.
Front Microbiol ; 8: 1893, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033925

RESUMO

Due to the ability of foodborne pathogens to survive in low moisture food, the decontamination of milk powder is an important issue in food protection. The safety of food products is, however, not always insured and the different steps in the processing of food involve physiological and metabolic changes in bacteria. Among these changes, virulence properties may also be affected. In this study, the effect of drying and successive thermal treatments on the invasion capacity of Salmonella Typhimurium, Salmonella Senftenberg, and Cronobacter sakazakii was assessed. Bacteria were dried on milk powder at three different water activity levels (0.25, 0.58, and 0.80) and heated at two different temperatures (90°C and 100°C) for 30 and 120 s. After recovery, stressed bacterial populations were placed in contact with Caco-2 cells to estimate their invasion capacity. Our results show that drying increases the invasion capacity of foodborne pathogens, but that heat treatment in the dried state did not exert a selective pressure on bacterial cells depending on their invasion capacity after drying. Taken together, our findings add to the sum of knowledge on food safety in dried food products and provide insight into the effects of food processing.

12.
Food Res Int ; 99(Pt 1): 577-585, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28784519

RESUMO

Due to the ability of foodborne pathogens to survive in low moisture foods, the decontamination of these products is an important issue in food hygiene. Up to now, such decontamination has mostly been achieved through empirical methods. The intention of this work is to establish a more rational use of heat treatment cycles. The effects of thermal treatment cycles on the inactivation of dried Salmonella Typhimurium, Salmonella Senftenberg, Cronobacter sakazakii and Escherichia coli were assessed. Bacteria were mixed with whole milk powder and dried down to different water activity levels (0.11, 0.25, 0.44 and 0.58). The rate of inactivated bacteria was determined after thermal treatment at 85°C, 90°C, 95°C and 100°C, from 0s to 180s in closed vessels, in order to maintain aw during treatment. In a first step, logarithmic bacterial inactivation was fitted by means of a classical loglinear model in which temperature and aw have a significant effect (p<0.05). DT,aw values were estimated for each T, aw condition and the results clearly showed that aw is a major parameter in the thermal decontamination of dried foods, a lower aw involving greater thermal resistance. In a second step, Bigelow's law was used to determine zT, a classical parameter relative to temperature, and yaw values, a new parameter relative to aw resistance. The values obtained for zT and yaw showed that the bacterium most resistant to temperature variations is Salmonella Typhimurium, while the one most resistant to aw variations is Escherichia coli. These data will help design decontamination protocols or processes in closed batches for low moisture foods.


Assuntos
Descontaminação/métodos , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Bactérias Gram-Negativas/fisiologia , Temperatura Alta , Leite/microbiologia , Modelos Teóricos , Água/química , Animais , Cronobacter sakazakii/fisiologia , Escherichia coli/fisiologia , Qualidade dos Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Viabilidade Microbiana , Pós , Salmonella typhimurium/fisiologia , Fatores de Tempo
13.
Int J Food Microbiol ; 248: 82-89, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28288399

RESUMO

Listeria monocytogenes, a bacterium that is responsible for listeriosis, is a very diverse species. Desiccation resistance has been rarely studied in L. monocytogenes, although it is a stress that is largely encountered by this microorganism in food-processing environments and that could be managed to prevent its presence. The objective of this study was to evaluate the resistance of 30 L. monocytogenes strains to moderate desiccation (75% relative humidity) and evaluate the correlation of such resistance with the strains' virulence, serotype and genotype. The results showed a great heterogeneity of strains regarding their ability to survive (loss of cultivability between 0.4 and 2.0 log). Strains were classified into three groups according to desiccation resistance (sensitive, intermediate, or resistant), and the strain repartition was analyzed relative to serotype, virulence level and environmental origin of the strains. No correlation was found between isolate origin and desiccation resistance. All serotype 1/2b strains were classified into the group of resistant strains. Virulent and hypovirulent strains were distributed among the three groups of desiccation resistance. Finally, a genomic comparison was performed based on 31 genes that were previously identified as being involved in desiccation resistance. The presence of those genes was localized among the genomes of some strains and compared regarding strain-resistance levels. High nucleotide conservation was identified between resistant and desiccation-sensitive strains. In conclusion, the findings regarding the strains of serotype 1/2b indicate potential serotype-specific resistance to desiccation, and thus, to relative humidity fluctuations potentially encountered in food-related environments. The genomic comparison of 31 genes associated to desiccation tolerance did not reveal differences among four strains which have different level of resistance to desiccation.


Assuntos
Dessecação , Listeria monocytogenes , Estresse Fisiológico/fisiologia , Manipulação de Alimentos , Genômica , Genótipo , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Sorogrupo , Virulência/genética
14.
Food Microbiol ; 62: 82-91, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889170

RESUMO

Salmonella Typhimurium and Cronobacter sakazakii are two foodborne pathogens involved in neonatal infections from milk powder and infant formula. Their ability to survive in low-moisture food and during processing from the decontamination to the dried state is a major issue in food protection. In this work, we studied the effects of the drying process on Salmonella Typhimurium and Cronobacter sakazakii, with the aim of identifying the drying parameters that could promote greater inactivation of these two foodborne pathogens. These two bacteria were dried under different atmospheric relative humidities in milk and phosphate-buffered saline, and the delays in growth recovery and cultivability were followed. We found that water activity was related to microorganism resistance. C. sakazakii was more resistant to drying than was S. Typhimurium, and milk increased the cultivability and recovery of these two species. High drying rates and low final water activity levels (0.11-0.58) had a strong negative effect on the growth recovery and cultivability of these species. In conclusion, we suggest that effective use of drying processes may provide a complementary tool for food decontamination and food safety during the production of low-moisture foods.


Assuntos
Cronobacter sakazakii/fisiologia , Dessecação , Viabilidade Microbiana , Leite/microbiologia , Salmonella typhimurium/fisiologia , Animais , Soluções Tampão , Cronobacter sakazakii/crescimento & desenvolvimento , Microbiologia de Alimentos , Cinética , Salmonella typhimurium/crescimento & desenvolvimento
15.
PLoS One ; 11(8): e0160844, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494169

RESUMO

Drying is a common process which is used to preserve food products and technological microorganisms, but which is deleterious for the cells. The aim of this study is to differentiate the effects of drying alone from the effects of the successive and necessary rehydration. Rehydration of dried bacteria is a critical step already studied in starter culture but not for different kinetics and not for pathogens. In the present study, the influence of rehydration kinetics was investigated for three foodborne pathogens involved in neonatal diseases caused by the consumption of rehydrated milk powder: Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica serovar Senftenberg and Cronobacter sakazakii. Bacteria were dried in controlled relative humidity atmospheres and then rehydrated using different methods. Our results showed that the survival of the three pathogens was strongly related to rehydration kinetics. Consequently, rehydration is an important step to consider during food safety assessment or during studies of dried foodborne pathogens. Also, it has to be considered with more attention in consumers' homes during the preparation of food, like powdered infant formula, to avoid pathogens recovery.


Assuntos
Infecções Bacterianas/microbiologia , Cronobacter sakazakii/crescimento & desenvolvimento , Dessecação , Hidratação , Salmonella enterica/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Microbiologia de Alimentos , Humanos
16.
Biochim Biophys Acta ; 1858(9): 2060-2069, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27267704

RESUMO

In this work, we investigated how a combination of ethanol and high temperature (70°C), affect the properties of the inner membrane of Bacillus subtilis spores. We observed membrane permeabilization for ethanol concentrations ≥50%, as indicated by the staining of the spores' DNA by the cell impermeable dye Propidium Iodide. The loss of membrane integrity was also confirmed by a decrease in the peak corresponding to dipicolinic acid using infrared spectroscopy. Finally, the spore refractivity (as measured by phase contrast microscopy) was decreased after the ethanol-heat treatment, suggesting a partial rehydration of the protoplast. Previously we have used fluorescent lifetime imaging microscopy (FLIM) combined with the fluorescent molecular rotor Bodipy-C12 to study the microscopic viscosity in the inner membrane of B. subtilis spores, and showed that at normal conditions it is characterized by a very high viscosity. Here we demonstrate that the ethanol/high temperature treatment led to a decrease of the viscosity of the inner membrane, from 1000cP to 860cP for wild type spores at 50% of ethanol. Altogether, our present work confirms the deleterious effect of ethanol on the structure of B. subtilis spores, as well as demonstrates the ability of FLIM - Bodipy-C12 to measure changes in the microviscosity of the spores upon perturbation.


Assuntos
Bacillus subtilis/química , Membrana Celular/química , Etanol/química , Esporos Bacterianos/química , Bacillus subtilis/citologia , Compostos de Boro/química , Microscopia de Fluorescência , Permeabilidade , Esporos Bacterianos/citologia , Viscosidade
18.
Appl Microbiol Biotechnol ; 100(12): 5547-58, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26980099

RESUMO

Osmoporation is an innovative method that can be used with food-grade yeast cells of Saccharomyces cerevisiae as natural encapsulating matrices. This technique overcomes barriers that difficult encapsulation and enables the internalization of fragile bioactive molecules such as fisetin into yeasts. In the present study, we assessed the effects of concentration, osmotic pressure, and temperature on the encapsulation efficiency (EE) and internalized fisetin content (IF). Two different quantification strategies were investigated: direct extraction (DE) without cell washing or freeze-drying steps and indirect extraction (IE) performed after washings with ethanol and freeze-drying. Our results showed that osmoporation improved EE (33 %) and IF (1.199 mg). The best experimental conditions were found by using DE. High-resolution images showed that the yeast cell envelope was preserved during osmoporation at 30 MPa and 84 % of yeast cells remained viable after treatment. Washing cells with organic solvent led to decreased EE (0.65 %) and IF (0.023 mg). This was probably due to either damages caused to yeast cell envelope or fisetin dragged out of cell. Overall, the results demonstrated the adequacy and relevant biotechnological potential of yeasts as encapsulating matrices for hydrophobic compounds. This fresh biotechnological approach has proven to be a promising tool for the production of bioactive-rich food products.


Assuntos
Biotecnologia , Cápsulas/química , Flavonoides , Saccharomyces cerevisiae/fisiologia , Fosfatos de Cálcio , Cápsulas/análise , Cápsulas/metabolismo , Flavonoides/análise , Flavonoides/química , Flavonóis , Liofilização , Interações Hidrofóbicas e Hidrofílicas , Pressão Osmótica , Saccharomyces cerevisiae/ultraestrutura , Temperatura
19.
PLoS One ; 11(2): e0148418, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840373

RESUMO

Relative air humidity fluctuations could potentially affect the development and persistence of pathogenic microorganisms in their environments. This study aimed to characterize the impact of relative air humidity (RH) variations on the survival of Listeria monocytogenes, a bacterium persisting on food processing plant surfaces. To assess conditions leading to the lowest survival rate, four strains of L. monocytogenes (EGDe, CCL500, CCL128, and LO28) were exposed to different RH conditions (75%, 68%, 43% and 11%) with different drying kinetics and then rehydrated either progressively or instantaneously. The main factors that affected the survival of L. monocytogenes were RH level and rehydration kinetics. Lowest survival rates between 1% and 0.001% were obtained after 3 hours of treatment under optimal conditions (68% RH and instantaneous rehydration). The survival rate was decreased under 0.001% after prolonged exposure (16h) of cells under optimal conditions. Application of two successive dehydration and rehydration cycles led to an additional decrease in survival rate. This preliminary study, performed in model conditions with L. monocytogenes, showed that controlled ambient RH fluctuations could offer new possibilities to control foodborne pathogens in food processing environments and improve food safety.


Assuntos
Umidade , Listeria monocytogenes/crescimento & desenvolvimento , Viabilidade Microbiana , Inocuidade dos Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Listeriose/microbiologia , Listeriose/prevenção & controle
20.
Microsc Microanal ; 22(1): 63-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26810277

RESUMO

An original high-pressure microscopy chamber has been designed for real-time visualization of biological cell growth during high isostatic (gas or liquid) pressure treatments up to 200 MPa. This new system is highly flexible allowing cell visualization under a wide range of pressure levels as the thickness and the material of the observation window can be easily adapted. Moreover, the design of the observation area allows different microscope objectives to be used as close as possible to the observation window. This chamber can also be temperature controlled. In this study, the resistance and optical properties of this new high-pressure chamber have been tested and characterized. The use of this new chamber was illustrated by a real-time study of the growth of two different yeast strains - Saccharomyces cerevisiae and Candida viswanathii - under high isostatic gas pressure (30 or 20 MPa, respectively). Using image analysis software, we determined the evolution of the area of colonies as a function of time, and thus calculated colony expansion rates.


Assuntos
Técnicas Citológicas/instrumentação , Técnicas Citológicas/métodos , Gases , Pressão Hidrostática , Microscopia/instrumentação , Microscopia/métodos , Candida/citologia , Candida/crescimento & desenvolvimento , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...