Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 524, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627360

RESUMO

Illustrated papyruses from Ancient Egypt have survived across millennia, depicting with vivid colors numerous stories and practices from a distant past. We have investigated a series of illustrated papyruses from Champollion's private collection showing scenes from the Book of the Dead, a document essential to prepare for the afterlife. The nature of the different pigments and their distribution are revealed by combining optical microscopy, Raman spectroscopy, and synchrotron X-ray powder diffraction and fluorescence. The standardized three-step process from the New Kingdom period was used, comprising a preparatory drawing made of red hematite, a coloring step using pigments from the Egyptian palette, and a final black contour drawn with a carbon-based ink. Interestingly, specific pigment mixes were deliberately chosen to obtain different shades. In some parts, the final contour significantly differs from the preliminary drawing, revealing the artist's creativity. These results enhance our knowledge of illustrative practices in Ancient Egypt.


Assuntos
Microscopia , Análise Espectral Raman , História Antiga , Antigo Egito , Egito
2.
Anal Chem ; 93(2): 1135-1142, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33316154

RESUMO

Although numerous papyri from ancient Egypt have been collected and preserved over the centuries, the recipe used to prepare black inks was only reported in manuscripts from the late Greco-Roman period. Black inks were mostly obtained after mixing carbon black with a binder agent and water. In previous studies performed on black inks apposed on papyri from ancient Egypt, additional chemical elements such as lead, iron, or copper were also identified, and the resulting chemical contrast with the papyrus support was used to virtually decrypt highly degraded or rolled papyri. Combining a series of synchrotron-based techniques with Raman spectroscopy and scanning electron microscopy, we investigated 10 papyri fragments from J.-F. Champollion's private collection. For each fragment, the carbon-black pigment found in the ink is identified as flame carbon (lampblack or soot). Using X-ray diffraction computed tomography, we show that the diffraction signal of the carbon-based pigment itself can be isolated. As a result, a contrast with the papyrus support is obtained, even in the absence of a specific chemical element in the ink. This is opening up new opportunities to decipher words written millennia ago, as part of our Cultural Heritage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...