Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(31): 7890-7895, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30018065

RESUMO

The lack of a mechanistic framework for chemical reactions forming inorganic extended solids presents a challenge to accelerated materials discovery. We demonstrate here a combined computational and experimental methodology to tackle this problem, in which in situ X-ray diffraction measurements monitor solid-state reactions and deduce reaction pathways, while theoretical computations rationalize reaction energetics. The method has been applied to the La2CuO4-x S x (0 ≤ x ≤ 4) quaternary system, following an earlier prediction that enhanced superconductivity could be found in these new lanthanum copper(II) oxysulfide compounds. In situ diffraction measurements show that reactants containing Cu(II) and S(2-) ions undergo redox reactions, leaving their ions in oxidation states that are incompatible with forming the desired new compounds. Computations of the reaction energies confirm that the observed synthetic pathways are indeed favored over those that would hypothetically form the suggested compounds. The consistency between computation and experiment in the La2CuO4-x S x system suggests a role for predictive theory: to identify and to explicate new synthetic routes for forming predicted compounds.

2.
ACS Nano ; 9(5): 4882-90, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25885122

RESUMO

Vertical stacking of two-dimensional (2D) crystals has recently attracted substantial interest due to unique properties and potential applications they can introduce. However, little is known about their microstructure because fabrication of the 2D heterostructures on a rigid substrate limits one's ability to directly study their atomic and chemical structures using electron microscopy. This study demonstrates a unique approach to create atomically thin freestanding van der Waals heterostructures-WSe2/graphene and MoS2/graphene-as ideal model systems to investigate the nucleation and growth mechanisms in heterostructures. In this study, we use transmission electron microscopy (TEM) imaging and diffraction to show epitaxial growth of the freestanding WSe2/graphene heterostructure, while no epitaxy is maintained in the MoS2/graphene heterostructure. Ultra-high-resolution aberration-corrected scanning transmission electron microscopy (STEM) shows growth of monolayer WSe2 and MoS2 triangles on graphene membranes and reveals their edge morphology and crystallinity. Photoluminescence measurements indicate a significant quenching of the photoluminescence response for the transition metal dichalcogenides on freestanding graphene, compared to those on a rigid substrate, such as sapphire and epitaxial graphene. Using a combination of (S)TEM imaging and electron diffraction analysis, this study also reveals the significant role of defects on the heterostructure growth. The direct growth technique applied here enables us to investigate the heterostructure nucleation and growth mechanisms at the atomic level without sample handling and transfer. Importantly, this approach can be utilized to study a wide spectrum of van der Waals heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...