Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 39(6): 1279-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26510400

RESUMO

Ascorbate is oxidized into the radical monodehydroascorbate (MDHA) through ascorbate oxidase or peroxidase activity or non-enzymatically by reactive oxygen species. Regeneration of ascorbate from MDHA is ensured by the enzyme MDHA reductase (MDHAR). Previous work has shown that growth processes and yield can be altered by modifying the activity of enzymes that recycle ascorbate; therefore, we have studied similar processes in cherry tomato (Solanum lycopersium L.) under- or overexpressing MDHAR. Physiological and metabolic characterization of these lines was carried out under different light conditions or by manipulating the source-sink ratio. Independently of the light regime, slower early growth of all organs was observed in MDHAR silenced lines, decreasing final fruit yield. Photosynthesis was altered as was the accumulation of hexoses and sucrose in a light-dependent manner in plantlets. Sucrose accumulation was also repressed in young fruits and final yield of MDHAR silenced lines showed a stronger decrease under carbon limitation, and the phenotype was partially restored by reducing fruit load. Ascorbate and MDHA appear to be involved in control of growth and sugar metabolism in cherry tomato and the associated enzymes could be potential targets for yield improvement.


Assuntos
NADH NADPH Oxirredutases/metabolismo , Solanum lycopersicum/fisiologia , Ácido Ascórbico/metabolismo , Metabolismo dos Carboidratos , Clorofila/metabolismo , Ácido Desidroascórbico/análogos & derivados , Ácido Desidroascórbico/metabolismo , Luz , Solanum lycopersicum/enzimologia , Solanum lycopersicum/crescimento & desenvolvimento , NADH NADPH Oxirredutases/antagonistas & inibidores , Fotossíntese , Transpiração Vegetal
2.
Plant Cell Environ ; 36(1): 159-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22725103

RESUMO

The regulation of carbon allocation between photosynthetic source leaves and sink tissues in response to stress is an important factor controlling plant yield. Ascorbate oxidase is an apoplastic enzyme, which controls the redox state of the apoplastic ascorbate pool. RNA interference was used to decrease ascorbate oxidase activity in tomato (Solanum lycopersicum L.). Fruit yield was increased in these lines under three conditions where assimilate became limiting for wild-type plants: when fruit trusses were left unpruned, when leaves were removed or when water supply was limited. Several alterations in the transgenic lines could contribute to the improved yield and favour transport of assimilate from leaves to fruits in the ascorbate oxidase lines. Ascorbate oxidase plants showed increases in stomatal conductance and leaf and fruit sugar content, as well as an altered apoplastic hexose:sucrose ratio. Modifications in gene expression, enzyme activity and the fruit metabolome were coherent with the notion of the ascorbate oxidase RNAi lines showing altered sink strength. Ascorbate oxidase may therefore be a target for strategies aimed at improving water productivity in crop species.


Assuntos
Ascorbato Oxidase/metabolismo , Metabolismo dos Carboidratos , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/enzimologia , Água/fisiologia , Ascorbato Oxidase/genética , Ácido Ascórbico/metabolismo , Biomassa , Frutas/metabolismo , Hexoses/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Metaboloma , Oxirredução , Folhas de Planta/enzimologia , Estômatos de Plantas/fisiologia , Interferência de RNA , Sacarose/metabolismo
3.
J Exp Bot ; 64(1): 33-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23109712

RESUMO

Ascorbate is a widespread and efficient antioxidant that has multiple functions in plants, traditionally associated with the reactions of photosynthesis. This review aims to look at ascorbate from an evolutionary perspective. Cyanobacteria, algae, and bryophytes contain lower concentrations of ascorbate than higher plants, where the molecule accumulates in high concentrations in both photosynthetic and non-photosynthetic organs and tissues. This increase in ascorbate concentration is paralleled by an increase in the number of isoforms of ascorbate peroxidase and the ascorbate regenerating enzymes mono- and dehydroascorbate reductase. One way of understanding the rise in ascorbate concentrations is to consider ascorbate as a molecule among others that has been subject to selection pressures during evolution, due to its cost or benefit for the cell and the organism. Ascorbate has a low cost in terms of synthesis and toxicity, and its benefits include protection of the glutathione pool and proper functioning of a range of enzymes. The hypothesis presented here is that these features would have favoured increasing roles for the molecule in the development and growth of multicellular organisms. This review then focuses on this diversity of roles for ascorbate in both photosynthetic and non-photosynthetic tissues of higher plants, including fruits and seeds, as well as further functions the molecule may possess by looking at other species. The review also highlights one of the trade-offs of domestication, which has often reduced or diluted ascorbate content in the quest for increased fruit growth and yield, with unknown consequences for the corresponding functional diversity, particularly in terms of stress resistance and adaptive responses to the environment.


Assuntos
Ácido Ascórbico/metabolismo , Evolução Biológica , Plantas/metabolismo , Antioxidantes/metabolismo , Transporte Biológico , Origem da Vida
4.
Plant Biotechnol J ; 11(3): 344-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23130940

RESUMO

Ascorbate is a powerful antioxidant in plants, and its levels are an important quality criteria in commercial species. Factors influencing these levels include environmental variations, particularly light, and the genetic control of its biosynthesis, recycling and degradation. One of the genes involved in the recycling pathway encodes a monodehydroascorbate reductase (MDHAR), an enzyme catalysing reduction of the oxidized radical of ascorbate, monodehydroascorbate, to ascorbate. In plants, MDHAR belongs to a multigene family. Here, we report the presence of an MDHAR isoform in both the cytosol and peroxisomes and show that this enzyme negatively regulates ascorbate levels in Solanum lycopersicum (tomato). Transgenic lines overexpressing MDHAR show a decrease in ascorbate levels in leaves, whereas lines where MDHAR is silenced show an increase in these levels in both fruits and leaves. Furthermore, the intensity of these differences is light dependent. The unexpected effect of this MDHAR on ascorbate levels cannot be explained by changes in the expression of Smirnoff-Wheeler pathway genes, or the activity of enzymes involved in degradation (ascorbate peroxidase) or recycling of ascorbate (dehydroascorbate reductase and glutathione reductase), suggesting a previously unidentified mechanism regulating ascorbate levels.


Assuntos
Ácido Ascórbico/metabolismo , NADH NADPH Oxirredutases/metabolismo , Peroxissomos/enzimologia , Solanum lycopersicum/enzimologia , Citosol/enzimologia , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos da radiação , NADH NADPH Oxirredutases/genética , Folhas de Planta/metabolismo
5.
C R Biol ; 332(11): 1007-21, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19909923

RESUMO

Very few reports have studied the interactions between ascorbate and fruit metabolism. In order to get insights into the complex relationships between ascorbate biosynthesis/recycling and other metabolic pathways in the fruit, we undertook a fruit systems biology approach. To this end, we have produced tomato transgenic lines altered in ascorbate content and redox ratio by RNAi-targeting several key enzymes involved in ascorbate biosynthesis (2 enzymes) and recycling (2 enzymes). In the VTC (ViTamin C) Fruit project, we then generated phenotypic and genomic (transcriptome, proteome, metabolome) data from wild type and mutant tomato fruit at two stages of fruit development, and developed or implemented statistical and bioinformatic tools as a web application (named VTC Tool box) necessary to store, analyse and integrate experimental data in tomato. By using Kohonen's self-organizing maps (SOMs) to cluster the biological data, pair-wise Pearson correlation analyses and simultaneous visualization of transcript/protein and metabolites (MapMan), this approach allowed us to uncover major relationships between ascorbate and other metabolic pathways.


Assuntos
Ácido Ascórbico/metabolismo , Frutas/crescimento & desenvolvimento , Genômica/métodos , Solanum lycopersicum/crescimento & desenvolvimento , Análise de Variância , Ascorbato Oxidase/genética , Ascorbato Oxidase/metabolismo , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos da radiação , Redes e Vias Metabólicas , Metaboloma , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteoma , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...