RESUMO
Background: Repurposed drugs for treatment of new onset disease may be an effective therapeutic shortcut. We aimed to evaluate the efficacy of repurposed antivirals compared to placebo in lowering SARS-CoV2 viral load of COVID-19 patients. Methods: REVOLUTIOn is a randomised, parallel, blinded, multistage, superiority and placebo controlled randomised trial conducted in 35 centres in Brazil. We include patients aged 18 years or older admitted to hospital with laboratory-confirmed SARS-CoV-2 infection, symptoms onset 9 days or less and SpO2 94% or lower at room air were eligible. All participants were randomly allocated to receive either atazanavir, daclatasvir or sofosbuvir/daclatasvir or placebo for 10 days. The primary outcome was the decay rate (slope) of the SARS-CoV-2 viral load logarithm assessed in the modified intention to-treat population. This trial was registered with ClinicalTrials.gov, number NCT04468087. Findings: Between February 09, 2021, and August 04, 2021, 255 participants were enrolled and randomly assigned to atazanavir (n = 64), daclatasvir (n = 66), sofosbuvir/daclatasvir (n = 67) or placebo (n = 58). Compared to placebo group, the change from baseline to day 10 in log viral load was not significantly different for any of the treatment groups (0.05 [95% CI, -0.03 to 0.12], -0.02 [95% CI, -0.09 to 0.06], and -0.03 [95% CI, -0.11 to 0.04] for atazanavir, daclatasvir and sofosbuvir/daclatasvir groups respectively). There was no significant difference in the occurrence of serious adverse events between treatment groups. Interpretation: No significant reduction in viral load was observed from the use of atazanavir, daclatasvir or sofosbuvir/daclatasvir compared to placebo in hospitalised COVID-19 patients who need oxygen support with symptoms onset 9 days or less. Funding: Ministério da Ciência, Tecnologia e Inovação (MCTI) - Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ); Cia Latino-Americana de Medicamentos (Clamed); Cia Industrial H. Carlos Schneider (Ciser); Hospital Research Foundation Incorporation, Australia, HCor São Paulo; Blanver Farmoquímica; Instituto de Tecnologia em Fármacos (Farmanguinhos) da Fundação Oswaldo Cruz (Fiocruz); Coordenação Geral de Planejamento Estratégico (Cogeplan)/Fiocruz; and Fundação de apoio a Fiocruz (Fiotec, VPGDI-054-FIO-20-2-13).
RESUMO
Orally available antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary because of the continuous circulation of new variants that challenge immunized individuals. Because severe COVID-19 is a virus-triggered immune and inflammatory dysfunction, molecules endowed with both antiviral and anti-inflammatory activity are highly desirable. We identified here that kinetin (MB-905) inhibits the in vitro replication of SARS-CoV-2 in human hepatic and pulmonary cell lines. On infected monocytes, MB-905 reduced virus replication, IL-6 and TNFα levels. MB-905 is converted into its triphosphate nucleotide to inhibit viral RNA synthesis and induce error-prone virus replication. Coinhibition of SARS-CoV-2 exonuclease, a proofreading enzyme that corrects erroneously incorporated nucleotides during viral RNA replication, potentiated the inhibitory effect of MB-905. MB-905 shows good oral absorption, its metabolites are stable, achieving long-lasting plasma and lung concentrations, and this drug is not mutagenic nor cardiotoxic in acute and chronic treatments. SARS-CoV-2-infected hACE-mice and hamsters treated with MB-905 show decreased viral replication, lung necrosis, hemorrhage and inflammation. Because kinetin is clinically investigated for a rare genetic disease at regimens beyond the predicted concentrations of antiviral/anti-inflammatory inhibition, our investigation suggests the opportunity for the rapid clinical development of a new antiviral substance for the treatment of COVID-19.
Assuntos
Antivirais , COVID-19 , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Cinetina/farmacologia , Inflamação/tratamento farmacológico , Nucleotídeos , Replicação ViralRESUMO
The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has put an enormous pressure on human societies, at both health and economic levels. Early diagnosis of SARS-CoV-2, the causative agent of 2019 coronavirus disease (COVID-19), has proved an efficient method to rapidly isolate positive individuals and reduce transmission rates, thus alleviating its negative impact on society's well-being and economic growth. In this work, through a coordinated and centralized effort to monitor SARS-CoV-2 circulation in companies from the State of Rio de Janeiro, Brazil, we have detected and linked an early rise of infection rates in January 2022 to the introduction of the Omicron variant of concern (VoC) (BA.1). Interestingly, when the Omicron genomic isolates were compared to correlates from public datasets, it was revealed that introduction events were multiple, with possible migration routes mapping to: Mali; Oman and United States; and Italy, Latin America, and United States. In addition, we have built a haplotype network with our genomic dataset and found no strong evidence of transmission chains, between and within companies. Considering Omicron's particularly high transmissibility, and that most of our samples (>87%) arose from 3 out of 10 companies, these findings suggest that workers from such environments were exposed to SARS-CoV-2 outside their company boundaries. Thus, using a mixed strategy in which quick molecular diagnosis finds support in comprehensive genomic analysis, we have shown that a successfully implemented occupational health program should contribute to document emerging VoC and to limit the spread of SARS-CoV-2 at the workplace.
RESUMO
Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity.
RESUMO
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to extra caution in workplaces to avoid the coronavirus disease 2019 (COVID-19). In the occupational environment, SARS-CoV-2 testing is a powerful approach in providing valuable information to detect, monitor, and mitigate the spread of the virus and preserve productivity. Here a centralized Occupational Health Center provided molecular diagnosis and genomic sequences for companies and industries in Rio de Janeiro, Brazil. From May to August 2021, around 20% of the SARS-CoV-2 positive nasopharyngeal swabs from routinely tested workers were sequenced and reproduced the replacement of Gamma with Delta variant observed in regular surveillance programs. Moreover, as a proof-of-concept on the sensibility of the occupational health genomic surveillance program described here, it was also found: i) the primo-identification of B.1.139 and A.2.5 viral genomes in Brazil and ii) an improved dating of Delta VoC evolution, by identifying earlier cases associated with AY-related genomes. We interpret that SARS-CoV-2 molecular testing of workers, independent of symptom presentation, provides an earlier opportunity to identify variants. Thus, considering the continuous monitoring of SARS-CoV-2 in workplaces, positive samples from occupation health programs should be regarded as essential to improve the knowledge on virus genetic diversity and VoC emergence.
RESUMO
BACKGROUND: Critically ill 2019 coronavirus disease (COVID-19) patients under invasive mechanical ventilation (IMV) are 10 to 40 times more likely to die than the general population. Although progression from mild to severe COVID-19 has been associated with hypoxia, uncontrolled inflammation, and coagulopathy, the mechanisms involved in the progression to severity are poorly understood. METHODS: The virome of tracheal aspirates (TA) from 25 COVID-19 patients under IMV was assessed through unbiased RNA sequencing (RNA-seq), and correlation analyses were conducted using available clinical data. Unbiased sequences from nasopharyngeal swabs (NS) from mild cases and TA from non-COVID patients were included in our study for further comparisons. RESULTS: We found higher levels and differential expression of human endogenous retrovirus K (HERV-K) genes in TA from critically ill and deceased patients when comparing nasopharyngeal swabs from mild cases to TA from non-COVID patients. In critically ill patients, higher HERV-K levels were associated with early mortality (within 14 days of diagnosis) in the intensive care unit. Increased HERV-K expression in deceased patients was associated with IL-17-related inflammation, monocyte activation, and an increased consumption of clotting/fibrinolysis factors. Moreover, increased HERV-K expression was detected in human primary monocytes from healthy donors after experimental SARS-CoV-2 infection in vitro. CONCLUSION: Our data implicate the levels of HERV-K transcripts in the physiopathology of COVID-19 in the respiratory tract of patients under invasive mechanical ventilation. Video abstract.
Assuntos
COVID-19 , Retrovirus Endógenos , Estado Terminal , Retrovirus Endógenos/genética , Humanos , Inflamação , Sistema Respiratório , SARS-CoV-2RESUMO
Traditional methods of vector control have proven insufficient to reduce the alarming incidence of dengue, Zika, and chikungunya in endemic countries. The bacterium symbiont Wolbachia has emerged as an efficient pathogen-blocking and self-dispersing agent that reduces the vectorial potential of Aedes aegypti populations and potentially impairs arboviral disease transmission. In this work, we report the results of a large-scale Wolbachia intervention in Ilha do Governador, Rio de Janeiro, Brazil. wMel-infected adults were released across residential areas between August 2017 and March 2020. Over 131 weeks, including release and post-release phases, we monitored the wMel prevalence in field specimens and analyzed introgression profiles of two assigned intervention areas, RJ1 and RJ2. Our results revealed that wMel successfully invaded both areas, reaching overall infection rates of 50-70% in RJ1 and 30-60% in RJ2 by the end of the monitoring period. At the neighborhood-level, wMel introgression was heterogeneous in both RJ1 and RJ2, with some profiles sustaining a consistent increase in infection rates and others failing to elicit the same. Correlation analysis revealed a weak overall association between RJ1 and RJ2 (r = 0.2849, p = 0.0236), and an association at a higher degree when comparing different deployment strategies, vehicle or backpack-assisted, within RJ1 (r = 0.4676, p < 0.0001) or RJ2 (r = 0.6263, p < 0.0001). The frequency knockdown resistance (kdr) alleles in wMel-infected specimens from both areas were consistently high over this study. Altogether, these findings corroborate that wMel can be successfully deployed at large-scale as part of vector control intervention strategies and provide the basis for imminent disease impact studies in Southeastern Brazil.
RESUMO
Field release of Wolbachia-infected Aedes aegypti has emerged as a promising solution to manage the transmission of dengue, Zika and chikungunya in endemic areas across the globe. Through an efficient self-dispersing mechanism, and the ability to induce virus-blocking properties, Wolbachia offers an unmatched potential to gradually modify wild Ae. aegypti populations turning them unsuitable disease vectors. Here we describe a proof-of-concept field trial carried out in a small community of Niterói, greater Rio de Janeiro, Brazil. Following the release of Wolbachia-infected eggs, we report here a successful invasion and long-term establishment of the bacterium across the territory, as denoted by stable high-infection indexes (> 80%). We have also demonstrated that refractoriness to dengue and Zika viruses, either thorough oral-feeding or intra-thoracic saliva challenging assays, was maintained over the adaptation to the natural environment of Southeastern Brazil. These findings further support Wolbachia's ability to invade local Ae. aegypti populations and impair disease transmission, and will pave the way for future epidemiological and economic impact assessments.
Assuntos
Aedes/virologia , Arbovírus/fisiologia , Mosquitos Vetores/virologia , Controle Biológico de Vetores/estatística & dados numéricos , Wolbachia , Animais , Brasil , Vírus da Dengue/isolamento & purificação , Feminino , Controle Biológico de Vetores/métodos , Zika virus/isolamento & purificaçãoRESUMO
The dynamics underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection remain poorly understood. We identified a small cluster of patients in Brazil who experienced 2 episodes of coronavirus disease (COVID-19) in March and late May 2020. In the first episode, patients manifested an enhanced innate response compared with healthy persons, but neutralizing humoral immunity was not fully achieved. The second episode was associated with different SARS-CoV-2 strains, higher viral loads, and clinical symptoms. Our finding that persons with mild COVID-19 may have controlled SARS-CoV-2 replication without developing detectable humoral immunity suggests that reinfection is more frequent than supposed, but this hypothesis is not well documented.
Assuntos
COVID-19 , SARS-CoV-2 , Brasil/epidemiologia , Humanos , Imunidade Humoral , ReinfecçãoRESUMO
BACKGROUND: Aedes aegypti is a major disease vector in urban habitats, involved in the transmission of dengue, chikungunya and Zika. Despite innumerous attempts to contain disease outbreaks, there are neither efficient vaccines nor definite vector control methods nowadays. In recent years, an innovative strategy to control arboviruses, which exploits the endosymbiotic bacterium Wolbachia pipientis, emerged with great expectations. The success of the method depends on many aspects, including Wolbachia's cytoplasmic incompatibility and pathogen interference phenotypes, as well as its effect on host fitness. In this work, we investigated the influence the Wolbachia strain wMel exerts on embryo development and egg viability and speculate on its field release use. METHODS: Wild-type (Br or Rockefeller) and Wolbachia-harboring specimens (wMelBr) were blood-fed and submitted to synchronous egg laying for embryo development assays. Samples were analyzed for morphological markers, developmental endpoint and egg resistance to desiccation (ERD). Quiescent egg viability over time was also assessed. RESULTS: wMelBr samples completed embryogenesis 2-3 hours later than wild-type. This delay was also observed through the onset of both morphological and physiological markers, respectively by the moments of germband extension and ERD acquisition. Following the end of embryonic development, wMelBr eggs were slightly less resistant to desiccation and showed reduced viability levels, which rapidly decayed after 40 days into quiescence, from approximately 75% to virtually 0% in less than a month. CONCLUSIONS: Our data revealed that the wMel strain of Wolbachia slightly delays embryogenesis and also affects egg quality, both through reduced viability and desiccation resistance. These findings suggest that, although embryonic fitness is somehow compromised by wMel infection, an efficient host reproductive manipulation through cytoplasmic incompatibility seems sufficient to overcome these effects in nature and promote bacterial invasion, as shown by successful ongoing field implementation.
Assuntos
Aedes/microbiologia , Mosquitos Vetores/microbiologia , Óvulo/crescimento & desenvolvimento , Aedes/embriologia , Animais , Sobrevivência Celular , Desenvolvimento Embrionário , Feminino , Humanos , Masculino , Wolbachia/fisiologiaRESUMO
New possibilities for vector-borne disease control are revealed by Duvall et al. (2019), who link host-seeking behavioral modulation in Aedes aegypti to neuropeptide Y (NPY)-like receptor 7. Small-molecule screening yields agonist compounds able to activate NPYLR7 and suppress attraction to hosts.
Assuntos
Aedes , Mordeduras e Picadas de Insetos , Animais , Mosquitos Vetores , Receptores de Neuropeptídeo YRESUMO
BACKGROUND: Mosquito-borne diseases are rapidly spreading to vast territories, putting at risk most of the world's population. A key player in this scenario is Aedes aegypti, a hematophagous species which hosts and transmits viruses causing dengue and other serious illnesses. Since vector control strategies relying only on insecticides have proven unsustainable, an alternative method involving the release of Wolbachia-harboring individuals has emerged. Its successful implementation vastly depends on how fit the released individuals are in the natural habitat, being able to mate with wild populations and to spread Wolbachia to subsequent generations. In mosquitoes, an important aspect of reproductive fitness is the acoustic communication between males and females, which translates to interactions between harmonic frequencies in close proximity flight. This study aimed to characterize the flight tone produced by individuals harboring Wolbachia, also evaluating their ability to establish stable acoustic interactions. METHODS: Wild-type (WT) and Wolbachia-harboring specimens (wMelBr) were thorax-tethered to blunt copper wires and placed at close proximity to sensitive microphones. Wing-beat frequencies (WBFs) were characterized at fundamental and harmonic levels, for both single individuals and couples. Harmonic interactions in homogeneous and heterogeneous couples of WT and wMelBr variants were identified, categorized and quantified accordingly. RESULTS: In tethered 'solo' flights, individuals harboring Wolbachia developed WBFs, differing slightly, in a sex-dependent way, from those of the WT strain. To test the ability to form harmonic 'duets', tethered couples of wMelBr and WT individuals were shuffled in different sex pairs and had their flight tones analyzed. All couple types, with WT and/or wMelBr individuals, were able to interact acoustically in the frequency range of 1300-1500 Hz, which translates to the convergence between male's second harmonic and female's third. No significant differences were found in the proportions of interacting couples between the pair types. Surprisingly, spectrograms also revealed the convergence between alternative harmonic frequencies, inside and outside the species putative hearing threshold. CONCLUSIONS: Wolbachia infection leads to small sex-dependent changes on the flight tones of Ae. aegypti, but it does not seem to prevent the stereotyped harmonic interaction between males and females. Therefore, when released in the natural habitat to breed with native individuals, Wolbachia-harboring individuals shall be fit enough to meet the criteria of acoustically-related mating behavior and promote bacteria dispersion effectively.
Assuntos
Aedes/fisiologia , Comunicação Animal , Mosquitos Vetores/fisiologia , Comportamento Sexual Animal , Wolbachia/fisiologia , Aedes/microbiologia , Animais , Feminino , Aptidão Genética , Masculino , Controle de Mosquitos , Mosquitos Vetores/microbiologiaRESUMO
BACKGROUND: Behavior rhythms of insect vectors directly interfere with the dynamics of pathogen transmission to humans. The sand fly Lutzomyia longipalpis is the main vector of visceral leishmaniasis in America and concentrates its activity around dusk. Despite the accumulation of behavioral data, very little is known about the molecular bases of the clock mechanism in this species. This study aims to characterize, within an evolutionary perspective, two important circadian clock genes, Clock and vrille. FINDINGS: We have cloned and isolated the coding sequence of L. longipalpis' genes Clock and vrille. The former is structured in eight exons and encodes a protein of 696 amino acids, and the latter comprises three exons and translates to a protein of 469 amino acids. When compared to other insects' orthologues, L. longipalpis CLOCK shows a high degree of conservation in the functional domains bHLH and PAS, but a much shorter glutamine-rich (poly-Q) C-terminal region. As for L. longipalpis VRILLE, a high degree of conservation was found in the bZIP domain. To support these observations and provide an elegant view of the evolution of both genes in insects, phylogenetic analyses based on maximum-likelihood and Bayesian inferences were performed, corroborating the previously known insect systematics. CONCLUSIONS: The isolation and phylogenetic analyses of Clock and vrille orthologues in L. longipalpis bring novel and important data to characterize this species' circadian clock. Interestingly, the poly-Q shortening observed in CLOCK suggests that its transcription activity might be impaired and we speculate if this effect could be compensated by other clock factors such as CYCLE.
Assuntos
Comportamento Animal/fisiologia , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica/fisiologia , Psychodidae/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Proteínas CLOCK/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Psychodidae/genética , Fatores de Transcrição/genéticaRESUMO
Despite the importance of circadian rhythms in vector-borne disease transmission, very little is known about its molecular control in hematophagous insect vectors. In Drosophila melanogaster, a negative feedback loop of gene expression has been shown to contribute to the clock mechanism. Here, we describe some features of the circadian clock of the sandfly Lutzomyia longipalpis, a vector of visceral leishmaniasis. Compared to D. melanogaster, sandfly period and timeless, two negative elements of the feedback loop, show similar peaks of mRNA abundance. On the other hand, the expression of Clock (a positive transcription factor) differs between the two species, raising the possibility that the different phases of Clock expression could be associated with the observed differences in circadian activity rhythms. In addition, we show a reduction in locomotor activity after a blood meal, which is correlated with downregulation of period and timeless expression levels. Our results suggest that the circadian pacemaker and its control over the activity rhythms in this hematophagous insect are modulated by blood intake.
Assuntos
Relógios Biológicos/genética , Ritmo Circadiano/genética , Regulação para Baixo/fisiologia , Proteínas de Insetos/genética , Insetos Vetores/fisiologia , Psychodidae/fisiologia , Animais , Drosophila melanogaster , Ingestão de Alimentos/fisiologia , Feminino , Leishmaniose Visceral/transmissão , MasculinoRESUMO
Ao longo da evolução, os seres vivos adquiriram um mecanismo endógeno de marcação temporal, capaz de ajustar o comportamento e a fisiologia do organismo aos horários mais propícios do dia, antevendo os ciclos ambientais de luminosidade e temperatura. Estudos de genética molecular revelaram que este mecanismo, denominado relógio circadiano, é composto por alças de auto-regulação negativas e positivas, que atuam na regulação transcricional e pós-transcricional de genes. No modelo de Drosophila melanogaster, o gene Clock (Clk) codifica um importante fator, envolvido na expressão rítmica dos genes de relógio period (per), timeless (tim), vrille (vri), Par Domain Protein 1 (Pdp1) e de inúmeros genes de output. Apesar da existência de grande quantidade de dados acerca dos ritmos de atividade e alimentação em insetos vetores de doenças, pouco se sabe quanto aos genes envolvidos em seus relógios circadianos. Neste trabalho, utilizando uma combinação de técnicas moleculares e análise in silico de dados disponíveis nos bancos de seqüências determinamos a seqüência codificante do gene Clock em três espécies com importância médica no Brasil e no mundo: Lutzomyia longipalpis, Aedes aegypti e Anopheles gambiae. Para L. longipalpis, foi obtida uma seqüência nucleotídica de 2.088 pb que, ao ser traduzida, gera uma proteína composta por 696 aminoácidos. Em Ae. aegypti, obteve-se uma seqüência de 2.661 pb, que traduz para uma proteína com 887 resíduos. Já em An. gambiae, a seqüência codificante do gene Clock possui uma extensão de 3.090 pb e gera uma proteína de 1.030 aminoácidos. O alinhamento entre as proteínas CLOCK de várias espécies revelou uma grande conservação dos domínios bHLH, de ligação ao DNA, e PAS, de dimerização protéica. O domínio de ativação gênica poli-Q, por outro lado, apresentou-se bastante diversificado, variando consideravelmente sua extensão entre as espécies estudadas. No caso de flebotomíneos, este domínio encontra-se bastante encurtado ou ausente...