Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959725

RESUMO

Production of large quantities of hepatocytes remains a major challenge for a number of clinical applications in the biomedical field. Directed differentiation of human pluripotent stem cells (hPSCs) into hepatocyte-like cells (HLCs) provides an advantageous solution and a number of protocols have been developed for this purpose. However, these methods usually follow different steps of liver development in vitro, which is time consuming and requires complex culture conditions. In addition, HLCs lack the full repertoire of functionalities characterising primary hepatocytes. Here, we explore the interest of forward programming to generate hepatocytes from hPSCs and to bypass these limitations. This approach relies on the overexpression of three hepatocyte nuclear factors (HNF1A, HNF6, and FOXA3) in combination with different nuclear receptors expressed in the adult liver using the OPTi-OX platform. Forward programming allows for the rapid production of hepatocytes (FoP-Heps) with functional characteristics using a simplified process. We also uncovered that the overexpression of nuclear receptors such as RORc can enhance specific functionalities of FoP-Heps thereby validating its role in lipid/glucose metabolism. Together, our results show that forward programming could offer a versatile alternative to direct differentiation for generating hepatocytes in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
Nat Protoc ; 12(4): 814-827, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28333915

RESUMO

The difficulty in isolating and propagating functional primary cholangiocytes is a major limitation in the study of biliary disorders and the testing of novel therapeutic agents. To overcome this problem, we have developed a platform for the differentiation of human pluripotent stem cells (hPSCs) into functional cholangiocyte-like cells (CLCs). We have previously reported that our 26-d protocol closely recapitulates key stages of biliary development, starting with the differentiation of hPSCs into endoderm and subsequently into foregut progenitor (FP) cells, followed by the generation of hepatoblasts (HBs), cholangiocyte progenitors (CPs) expressing early biliary markers and mature CLCs displaying cholangiocyte functionality. Compared with alternative protocols for biliary differentiation of hPSCs, our system does not require coculture with other cell types and relies on chemically defined conditions up to and including the generation of CPs. A complex extracellular matrix is used for the maturation of CLCs; therefore, experience in hPSC culture and 3D organoid systems may be necessary for optimal results. Finally, the capacity of our platform for generating large amounts of disease-specific functional cholangiocytes will have broad applications for cholangiopathies, in disease modeling and for screening of therapeutic compounds.


Assuntos
Ductos Biliares/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Epiteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Humanos
3.
Brain ; 138(Pt 11): 3345-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26220942

RESUMO

Tauopathies, such as Alzheimer's disease, some cases of frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy, are characterized by aggregates of the microtubule-associated protein tau, which are linked to neuronal death and disease development and can be caused by mutations in the MAPT gene. Six tau isoforms are present in the adult human brain and they differ by the presence of 3(3R) or 4(4R) C-terminal repeats. Only the shortest 3R isoform is present in foetal brain. MAPT mutations found in human disease affect tau binding to microtubules or the 3R:4R isoform ratio by altering exon 10 splicing. We have differentiated neurons from induced pluripotent stem cells derived from fibroblasts of controls and patients with N279K and P301L MAPT mutations. Induced pluripotent stem cell-derived neurons recapitulate developmental tau expression, showing the adult brain tau isoforms after several months in culture. Both N279K and P301L neurons exhibit earlier electrophysiological maturation and altered mitochondrial transport compared to controls. Specifically, the N279K neurons show abnormally premature developmental 4R tau expression, including changes in the 3R:4R isoform ratio and AT100-hyperphosphorylated tau aggregates, while P301L neurons are characterized by contorted processes with varicosity-like structures, some containing both alpha-synuclein and 4R tau. The previously unreported faster maturation of MAPT mutant human neurons, the developmental expression of 4R tau and the morphological alterations may contribute to disease development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Proteínas tau/genética , Adulto , Idoso , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/patologia , Recém-Nascido , Masculino , Microscopia Confocal , Microtúbulos/metabolismo , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/patologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tauopatias , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
4.
Nat Commun ; 6: 5999, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25580746

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which a greater understanding of early disease mechanisms is needed to reveal novel therapeutic targets. We report the use of human induced pluripotent stem cell (iPSC)-derived motoneurons (MNs) to study the pathophysiology of ALS. We demonstrate that MNs derived from iPSCs obtained from healthy individuals or patients harbouring TARDBP or C9ORF72 ALS-causing mutations are able to develop appropriate physiological properties. However, patient iPSC-derived MNs, independent of genotype, display an initial hyperexcitability followed by progressive loss of action potential output and synaptic activity. This loss of functional output reflects a progressive decrease in voltage-activated Na(+) and K(+) currents, which occurs in the absence of overt changes in cell viability. These data implicate early dysfunction or loss of ion channels as a convergent point that may contribute to the initiation of downstream degenerative pathways that ultimately lead to MN loss in ALS.


Assuntos
Proteínas de Ligação a DNA/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Fases de Leitura Aberta , Proteínas/genética , Potenciais de Ação , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72 , Linhagem Celular , Sobrevivência Celular , Feminino , Genótipo , Humanos , Masculino , Neurônios Motores/patologia , Técnicas de Patch-Clamp , Potássio/química , Sódio/química
5.
Stem Cells Transl Med ; 1(12): 855-65, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23283547

RESUMO

Induced pluripotent stem cells (iPSCs) have the potential to generate patient-specific tissues for disease modeling and regenerative medicine applications. However, before iPSC technology can progress to the translational phase, several obstacles must be overcome. These include uncertainty regarding the ideal somatic cell type for reprogramming, the low kinetics and efficiency of reprogramming, and karyotype discrepancies between iPSCs and their somatic precursors. Here we describe the use of late-outgrowth endothelial progenitor cells (L-EPCs), which possess several favorable characteristics, as a cellular substrate for the generation of iPSCs. We have developed a protocol that allows the reliable isolation of L-EPCs from peripheral blood mononuclear cell preparations, including frozen samples. As a proof-of-principle for clinical applications we generated EPC-iPSCs from both healthy individuals and patients with heritable and idiopathic forms of pulmonary arterial hypertension. L-EPCs grew clonally; were highly proliferative, passageable, and bankable; and displayed higher reprogramming kinetics and efficiencies compared with dermal fibroblasts. Unlike fibroblasts, the high efficiency of L-EPC reprogramming allowed for the reliable generation of iPSCs in a 96-well format, which is compatible with high-throughput platforms. Array comparative genome hybridization analysis of L-EPCs versus donor-matched circulating monocytes demonstrated that L-EPCs have normal karyotypes compared with their subject's reference genome. In addition, >80% of EPC-iPSC lines tested did not acquire any copy number variations during reprogramming compared with their parent L-EPC line. This work identifies L-EPCs as a practical and efficient cellular substrate for iPSC generation, with the potential to address many of the factors currently limiting the translation of this technology.


Assuntos
Células-Tronco Adultas/citologia , Técnicas de Cultura de Células/métodos , Endotélio Vascular/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Adulto , Células-Tronco Adultas/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Reprogramação Celular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Cariotipagem , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/fisiologia , Camundongos , Camundongos SCID , Transplante de Neoplasias , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Teratoma/patologia
6.
Genes Dev ; 23(18): 2134-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19696146

RESUMO

Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by overexpressing combinations of factors such as Oct4, Sox2, Klf4, and c-Myc. Reprogramming is slow and stochastic, suggesting the existence of barriers limiting its efficiency. Here we identify senescence as one such barrier. Expression of the four reprogramming factors triggers senescence by up-regulating p53, p16(INK4a), and p21(CIP1). Induction of DNA damage response and chromatin remodeling of the INK4a/ARF locus are two of the mechanisms behind senescence induction. Crucially, ablation of different senescence effectors improves the efficiency of reprogramming, suggesting novel strategies for maximizing the generation of iPS cells.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular , Senescência Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...