Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wellcome Open Res ; 9: 232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867757

RESUMO

We present the genome assembly of the pennate diatom Epithemia pelagica strain UHM3201 (Ochrophyta; Bacillariophyceae; Rhopalodiales; Rhopalodiaceae) and that of its cyanobacterial endosymbiont (Chroococcales: Aphanothecaceae). The genome sequence of the diatom is 60.3 megabases in span, and the cyanobacterial genome has a length of 2.48 megabases. Most of the diatom nuclear genome assembly is scaffolded into 15 chromosomal pseudomolecules. The organelle genomes have also been assembled, with the mitochondrial genome 40.08 kilobases and the plastid genome 130.75 kilobases in length. A number of other prokaryote MAGs were also assembled.

2.
Wellcome Open Res ; 9: 145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800516

RESUMO

We present a chromosomal-level genome assembly from an individual Tridacna gigas (the giant clam; Mollusca; Bivalvia; Veneroida; Cardiidae). The genome sequence is 1,175.9 megabases in span. Most of the assembly is scaffolded into 17 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 25.34 kilobases in length. Gene annotation of this assembly on Ensembl identified 18,177 protein coding genes.

3.
Proc Biol Sci ; 289(1976): 20212722, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36547392

RESUMO

Determining how adaptive possibilities do or do not become evolutionary realities is central to understanding the tempo and mode of evolutionary change. Some of the simplest evolutionary landscapes arise from underdominance at a single locus where the fitness valley consists of only one less-fit genotype. Despite their potential for rapid evolutionary change, few such examples have been investigated. We capitalized on an experimental system in which a significant evolutionary shift, the transition from uni-to-multicellularity, was observed in asexual diploid populations of Saccharomyces cerevisiae experimentally selected for increased settling rates. The multicellular phenotype results from recessive single-locus mutations that undergo loss-of-heterozygosity (LOH) events. By reconstructing the necessary heterozygous intermediate steps, we found that the evolution of multicellularity involves a decrease in size during the first steps. Heterozygous genotypes are 20% smaller in size than genotypes with functional alleles. Nevertheless, populations of heterozygotes give rise to multicellular genotypes more readily than unicellular genotypes with two functional alleles, by rapid LOH events. LOH drives adaptation that may enable rapid evolution in diploid yeast. Together these results show discordance between the phenotypic and genotypic multicellular transition. The evolutionary path to multicellularity, and the adaptive benefits of increased size, requires initial size reductions.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Aptidão Genética , Perda de Heterozigosidade , Saccharomyces cerevisiae , Adaptação Fisiológica/genética , Genótipo , Heterozigoto , Saccharomyces cerevisiae/genética
5.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432360

RESUMO

Comparative genome analyses have suggested East Asia to be the cradle of the domesticated microbe Brewer's yeast (Saccharomyces cerevisiae), used in the food and biotechnology industry worldwide. Here, we provide seven new, high-quality long-read genomes of nondomesticated yeast strains isolated from primeval forests and other natural environments in China and Taiwan. In a comprehensive analysis of our new genome assemblies, along with other long-read Saccharomycetes genomes available, we show that the newly sequenced East Asian strains are among the closest living relatives of the ancestors of the global diversity of Brewer's yeast, confirming predictions made from short-read genomic data. Three of these strains (termed the East Asian Clade IX Complex here) share a recent ancestry and evolutionary history suggesting an early divergence from other S. cerevisiae strains before the larger radiation of the species, and prior to its domestication. Our genomic analyses reveal that the wild East Asian strains contain elevated levels of structural variations. The new genomic resources provided here contribute to our understanding of the natural diversity of S. cerevisiae, expand the intraspecific genetic variation found in this heavily domesticated microbe, and provide a foundation for understanding its origin and global colonization history.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Núcleo Celular/genética , Evolução Molecular , Ásia Oriental , Genoma Mitocondrial , Variação Estrutural do Genoma , Genômica , Filogenia , Saccharomyces cerevisiae/classificação , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...