Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 732321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539452

RESUMO

Within the context of a growing aquaculture production coupled with a plateau of the production in the main components of aquafeeds (fish oil and fishmeal), recent studies have typically focused on replacing these feedstuffs with terrestrial plant ingredients for cultured carnivorous aquatic species, such as rainbow trout (Oncorhynchus mykiss). Substitution rates without adverse effects have, however, reached their limit. One potential way forward would be to take advantage of the genetic variability that exists in the salmonid population. However, to date, little is known about the underlying molecular mechanisms responsible for this genetic variability. The aim of the present research was to understand why some genotypes are better able to utilize plant-based diets devoid of marine resources. In this regard, three isogenic lines of rainbow trout (R23h, AB1h, and A22h), with similar growth when fed marine resources-based diets and which differ greatly in their responses to a plant-based diet, were fed with either a complete plant-based diet (V diet) or a marine resources-based diet (M diet) since first-feeding. Fish traits and the hepatic transcriptome of these three genotypes were compared after 5 months of feeding. First, differences in the ability to grow with the V diet observed amongst genotypes was not due to higher feed intake, but instead due to differences in feed efficiency. The comparison of transcriptome profiles revealed 575 (R23h vs. AB1h), 1,770 (R23h vs. A22h), and 2,973 (AB1h vs. A22h) probes differentially expressed amongst the three genotypes when fed the V diet. Interestingly, R23h and AB1h fish, which were the least affected by the V diet, exhibited the highest growth. These results demonstrate that these fish were able to maintain a high level of energy production and protein synthesis. Moreover, these genotypes were also able to activate pathways linked to lipid and cholesterol metabolisms, such as the biosynthesis of long-chain polyunsaturated fatty acids. Finally, as previously, immunity seems to also play an important role in the ability of fish to use the V diet, and further studies are needed to understand the mechanisms by which immunity interacts with growth.

2.
Front Physiol ; 10: 453, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068834

RESUMO

In aquaculture, fish may be exposed to sub-optimal rearing conditions, which generate a stress response if full adaptation is not displayed. However, our current knowledge of several coexisting factors that may give rise to a stress response is limited, in particular when both chronic and acute stressors are involved. This study investigated changes in metabolic parameters, oxidative stress and innate immune markers in a rainbow trout (Oncorhynchus mykiss) isogenic line exposed to a combination of dietary (electrolyte-imbalanced diet, DEB 700 mEq Kg-1) and environmental (hypoxia, 4.5 mg O2 L-1) challenges and their respective controls (electrolyte-balanced diet, DEB 200 mEq Kg-1 and normoxia, 7.9 or mg O2 L-1) for 49 days. At the end of this period, fish were sampled or subjected to an acute stressor (2 min of handling/confinement) and then sampled. Feeding trout an electrolyte-imbalanced diet produced a reduction in blood pH, as well as increases in cortisol levels, hepato-somatic index (HSI) and total energy content in the liver. The ratio between the lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH) activities decreased in the liver of trout fed the DEB 700 diet, but increased in the heart, suggesting a different modulation of metabolic capacity by the dietary challenge. Several markers of oxidative stress in the liver of trout, mainly related to the glutathione antioxidant system, were altered when fed the electrolyte-imbalanced diet. The dietary challenge was also associated with a decrease in the alternative complement pathway activity (ACH50) in plasma, suggesting an impaired innate immune status in that group. Trout subjected to the acute stressor displayed reduced blood pH values, higher plasma cortisol levels as well as increased levels of metabolic markers associated with oxidative stress in the liver. An interaction between diet and acute stressor was detected for oxidative stress markers in the liver of trout, showing that the chronic electrolyte-imbalance impairs the response of rainbow trout to handling/confinement. However, trout reared under chronic hypoxia only displayed changes in parameters related to energy use in both liver and heart. Taken together, these results suggest that trout displays an adaptative response to chronic hypoxia. Conversely, the dietary challenge profoundly affected fish homeostasis, resulting in an impaired physiological response leading to stress, which then placed constraints on a subsequent acute challenge.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30660681

RESUMO

This study investigates muscle growth mechanisms in juvenile rainbow trout in response to isoenergetic changes in dietary non-protein energy (NPE) source (F, fat vs. C, carbohydrates) at two levels of digestible protein to digestible energy (DP/DE) ratio. Fish (initial weight 32.4 g) were fed four diets having similar DE levels (~18 kJ g-1) with a high (HP/E~26 mg kJ-1) vs. low (LP/E~14 mg kJ-1) DP/DE ratio using F or C as major NPE source (7 week-experiment). The lowering of dietary DP/DE ratio increased myoblast determination protein 1a (myod1a) and decreased myostatin 1b (mstn1b) and cathepsin D (ctsd) muscle mRNA levels. The isoenergetic change in dietary NPE from F to C decreased myod1a and proliferative cell nuclear antigen (pcna) muscle mRNA levels. An interaction between DP/DE ratio and NPE source was observed in muscle transcript levels of myogenic factor 6 (mrf4/myf6), fast myosin heavy chain (fmhc) and fast myosin light chain 2 (fmlc2). White muscle total cross-sectional area decreased at low dietary DP/DE ratio and also when NPE source changed from F to C, linked i) to a decreased total number of white muscle fibres, indicating that low dietary DP/DE restricted muscle hyperplasia and that dietary carbohydrate were less efficiently used than fat to sustain muscle hyperplasia, and ii) to decreased percentage of large muscle fibres, indicating limited fibre hypertrophy. Not only the DP level or the DP/DE ratio, but also the isoenergetic change in dietary NPE source (fat vs carbohydrates) thus appears as a potent regulator of muscle hyperplasia and hypertrophy.


Assuntos
Proteínas Alimentares/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular , Oncorhynchus mykiss/crescimento & desenvolvimento , Ração Animal/análise , Animais , Proliferação de Células/genética , Desenvolvimento Muscular/genética , Oncorhynchus mykiss/genética , Proteólise , Transcrição Gênica
4.
Front Physiol ; 9: 1579, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483148

RESUMO

Rainbow trout (Oncorhynchus mykiss) is recognized as a typical "glucose-intolerant" fish, and the limits of dietary carbohydrate utilization have been investigated for many years. In this study, the objective was to test the molecular effects of dietary carbohydrates on intermediary metabolism in two major metabolic tissues, liver and muscle. Another objective was also to study if the response to carbohydrate intake depended on the genetic background. We fed two isogenic lines of rainbow trout (named A22h and N38h) with high carbohydrate diet (carbohydrate, 22.9%) or low carbohydrate diet (carbohydrate, 3.6%) for 12 weeks. Carbohydrates were associated with higher feed utilization owned by the well-known protein-sparing effect, with better fish growth performance. However, atypical regulation of glycolysis and gluconeogenesis in liver and absence of hk and glut4 induction in muscle, were also observed. Regarding the effects of carbohydrates on other metabolism, we observed an increased, at a molecular level, of hepatic cholesterol biosynthesis, fatty acid oxidation and mitochondrial energy metabolism. Genetic variability (revealed by the differences between the two isogenic lines) was observed for some metabolic genes especially for those involved in the EPA and DHA biosynthetic capacity. Finally, our study demonstrates that dietary carbohydrate not only affect glucose metabolism but also strongly impact the lipid and energy metabolism in liver and muscle of trout.

5.
PLoS One ; 13(7): e0201462, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30063731

RESUMO

To meet the growing demand of fish feed for aquaculture, an increasing proportion of marine ingredients are being replaced by blends of plant products. However, the total replacement of marine ingredients in salmonid diets impairs fish performance. This is particularly true during the early fry stage and this stage is therefore considered of particular importance. In rainbow trout (RBT), the existence of a genetic variability to survive and grow with plant-based diets devoid of marine ingredients has now been proved, but the mechanisms behind are little studied especially at early stage. To investigate these, we analysed the whole transcriptome of three isogenic lines of RBT fry, which have similar growth when fed a marine resources-based diet (M diet) but which highly differ in their responses to a plant-based diet (V diet). Analysis of transcriptomes profiles revealed 1740, 1834 and 246 probes differentially expressed among the three genotypes when fed the V diet. The use of these lines led to the discovery of potential molecular markers linked to plant-based diet utilisation, some of them belonging to new pathways, never described before. An important number of genes was related to immunity, but further investigations are needed to better understand the difference between the genotypes in their immune status response to V diet exposure. Finally, differences in expression of genes related to feed intake and sensory perception among genotypes suggested that the mechanisms underlying the differences in growth on plant-based diet are closely linked to diet acceptance. Research on plants components affecting feed intake should be thus further explored.


Assuntos
Ração Animal , Aquicultura/métodos , Ingestão de Alimentos , Genótipo , Oncorhynchus mykiss , Animais , Ingestão de Alimentos/genética , Ingestão de Alimentos/imunologia , Feminino , Masculino , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/imunologia
6.
Biol Open ; 7(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29716943

RESUMO

Rainbow trout (Oncorhynchus mykiss) was recognized as a typical 'glucose-intolerant' fish and poor dietary carbohydrate user. Our first objective was to test the effect of dietary carbohydrates themselves (without modification of dietary protein intake) on hepatic glucose gene expression (taking into account the paralogs). The second aim was to research if two isogenic trout lines had different responses to carbohydrate intake, showing one with a better use dietary carbohydrates. Thus, we used two isogenic lines of rainbow trout (named A32h and AB1h) fed with either a high carbohydrate diet or a low carbohydrate diet for 12 weeks. We analysed the zootechnical parameters, the plasma metabolites, the hepatic glucose metabolism at the molecular level and the hormonal-nutrient sensing pathway. Globally, dietary carbohydrate intake was associated with hyperglycaemia and down regulation of the energy sensor Ampk, but also with atypical regulation of glycolysis and gluconeogenesis in the liver. Indeed, the first steps of glycolysis and gluconeogenesis catalysed by the glucokinase and the phospenolpyruvate carboxykinase are regulated at the molecular level by dietary carbohydrates as expected (i.e. induction of the glycolytic gck and repression of the gluconeogenic pck); by contrast, and surprisingly, for two other key glycolytic enzymes (phosphofructokinase enzyme - pfkl and pyruvate kinase - pk) some of the paralogs (pfklb and pklr) are inhibited by carbohydrates whereas some of the genes coding gluconeogenic enzymes (the glucose-6-phosphatase enzyme g6pcb1b and g6pcb2a gene and the fructose1-6 biphosphatase paralog fbp1a) are induced. On the other hand, some differences for the zootechnical parameters and metabolic genes were also found between the two isogenic lines, confirming the existence of genetic polymorphisms for nutritional regulation of intermediary metabolism in rainbow trout. In conclusion, our study determines some new and unexpected molecular regulations of the glucose metabolism in rainbow trout which may partly lead to the poor utilization of dietary carbohydrates and it underlines the existence of differences in molecular regulation of glucose metabolism between two isogenic lines which provides arguments for future selection of rainbow trout.

7.
Sci Rep ; 8(1): 4965, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563578

RESUMO

Oxygen limitation and dietary imbalances are key aspects influencing feed intake (FI) and growth performance in cultured fish. This study investigated the combined effects of hypoxia and dietary electrolyte balance on the growth performance, body composition and nutrient utilization in a rainbow trout (Oncorhynchus mykiss) isogenic line. Fish were fed ad libitum two experimental diets: electrolyte-balanced or -imbalanced diets (DEB 200 or 700 mEq kg-1, respectively) and exposed to normoxia or hypoxia (7.9 or 4.5 mg O2 l-1, respectively) for 42 days. DEB did not affect FI, growth performance or body composition. Nevertheless, hypoxia had a negative impact, reducing FI (6%), growth rate (8%), oxygen consumption (19%), energy (5%) and lipid (42%) contents. Digestible energy intake and heat production were higher in normoxic fish (40% and 23%, respectively), retaining 64% more energy in lipid or protein. Hypoxia reduced the apparent digestibility of dry matter, ash, protein, lipid, carbohydrates and energy. Trout fed DEB 700 diet were energetically less efficient, reflected in higher heat production and energy requirements for maintenance. FI was inhibited by low dissolved oxygen levels, but not by electrolyte-imbalanced diet, in spite of the higher energy requirements for maintenance. This study highlights the importance that dietary-electrolyte content and DO levels have on energy balance and growth performance when fish are fed to satiation.


Assuntos
Ração Animal , Aquicultura , Ingestão de Alimentos/fisiologia , Hipóxia/fisiopatologia , Oncorhynchus mykiss/fisiologia , Animais , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Hipóxia/etiologia , Necessidades Nutricionais/fisiologia , Oncorhynchus mykiss/metabolismo , Consumo de Oxigênio/fisiologia , Termogênese/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Desequilíbrio Hidroeletrolítico/etiologia , Desequilíbrio Hidroeletrolítico/fisiopatologia
8.
Br J Nutr ; 119(7): 782-791, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29569541

RESUMO

Currently, energy evaluation of fish feeds is performed on a digestible energy basis. In contrast to net energy (NE) evaluation systems, digestible energy evaluation systems do not differentiate between the different types of digested nutrients regarding their potential for growth. The aim was to develop an NE evaluation for fish by estimating the energy efficiency of digestible nutrients (protein, fat and carbohydrates) and to assess whether these efficiencies differed between Nile tilapia and rainbow trout. Two data sets were constructed. The tilapia and rainbow data set contained, respectively, eight and nine experiments in which the digestibility of protein, fat and energy and the complete energy balances for twenty-three and forty-five diets was measured. The digestible protein (dCP), digestible fat (dFat) and digestible carbohydrate intakes (dCarb) were calculated. By multiple regression analysis, retained energy (RE) was related to dCP, dFat and dCarb. In tilapia, all digestible nutrients were linearly related to RE (P<0·001). In trout, RE was quadratically related to dCarb (P<0·01) and linearly to dCP and dFat (P<0·001). The NE formula was NE=11·5×dCP+35·8×dFAT+11·3×dCarb for tilapia and NE=13·5×dCP+33·0×dFAT+34·0×dCarb-3·64×(dCarb)2 for trout (NE in kJ/(kg0·8×d); dCP, dFat and dCarb in g/(kg0·8×d)). In tilapia, the energetic efficiency of dCP, dFat and dCarb was 49, 91 and 66 %, respectively, showing large similarity with pigs. Tilapia and trout had similar energy efficiencies of dCP (49 v. 57 %) and dFat (91 v. 84 %), but differed regarding dCarb.


Assuntos
Ração Animal/análise , Ciclídeos/crescimento & desenvolvimento , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Oncorhynchus mykiss/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , Animais , Aquicultura , Dieta/veterinária , Feminino , Masculino
9.
PLoS One ; 12(10): e0186705, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29059226

RESUMO

In the context of limited marine resources, the exponential growth of aquaculture requires the substitution of fish oil and fishmeal, the traditional components of fish feeds by terrestrial plant ingredients. High levels of such substitution are known to negatively impact fish performance such as growth and survival in rainbow trout (Oncorhynchus mykiss) as in other salmonids. In this respect, genetic selection is a key enabler for improving those performances and hence for the further sustainable development of aquaculture. We selected a rainbow trout line over three generations for its ability to survive and grow on a 100% plant-based diet devoid of both fish oil and fishmeal (V diet) from the very first meal. In the present study, we compared the control line and the selected line after 3 generations of selection, both fed either the V diet or a marine resources-based diet (M diet). The objective of the study was to assess the efficiency of selection and the consequences on various correlated nutritional traits: feed intake, feed efficiency, digestibility, composition of whole fish, nutrient retention and fatty acid (FA) profile. We demonstrated that the genetic variability present in our rainbow trout population can be selected to improve survival and growth. The major result of the study is that after only three generations of selection, selected fish fed the V diet grew at the same rate as the control line fed the M diet, whilst the relative reduction of body weight was 36.8% before the selection. This enhanced performance on the V diet seems to be mostly linked to a higher feed intake for the selected fish.


Assuntos
Ração Animal , Óleos de Peixe , Peixes , Oncorhynchus mykiss/crescimento & desenvolvimento , Animais
10.
Rapid Commun Mass Spectrom ; 31(20): 1742-1748, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28805256

RESUMO

RATIONALE: Carbon and nitrogen stable isotope analyses of fish tissues are now commonly used in ecological studies but mostly require the sacrifice of the animal. Ethical considerations recommend the use of anesthetics for tissue sampling. This study examines how anesthetics affect stable isotope ratios of fish compared with other euthanasia methods. METHODS: Rainbow trout fry and juveniles were sacrificed using ice-freezing (as this common method used to kill fish does not affect natural isotopic ratios), electronarcosis or an overdose of chemical anesthetics (2-phenoxyethanol, benzocaine and clove oil). For fry, we sampled the whole animal whereas, for juveniles, white dorsal muscle, liver, red blood cells, plasma, external tegument and pectoral fin were sampled. Isotopic ratios and the elemental compositions of carbon and nitrogen were then measured. RESULTS: The δ15 N values, and the C and N contents of all considered tissues as well as δ13 C values of muscle, liver, red blood cells and plasma, were not affected by the use of chemical anesthetics. Clove oil and to a lesser extent 2-phenoxyethanol and benzocaine decreased δ13 C values of whole fry and juvenile external tegument and pectoral fin. The use of electronarcosis drastically affects the δ13 C and δ15 N values of all fish tissues. CONCLUSIONS: Anesthetics should be avoided for δ13 C analysis when tissues are in contact with the water containing the anesthetic. Ice-immersion has to be preferred when approved by guidelines. If not, benzocaine and 2-phenoxyethanol should be preferred over clove oil. Electronarcosis should not be used to kill fish until further investigations are performed.


Assuntos
Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Oncorhynchus mykiss/metabolismo , Animais , Isótopos de Carbono/metabolismo , Eutanásia , Congelamento , Espectrometria de Massas , Isótopos de Nitrogênio/metabolismo
11.
Sci Rep ; 7(1): 363, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28337034

RESUMO

Rainbow trout (Oncorhynchus mykiss) is considered a "glucose-intolerant" species. With the aim of programming trout to improve their metabolic use of dietary carbohydrates, we hypothesised that a hypoxic stimulus applied during embryogenesis could later affect glucose metabolism at the first-feeding stage. An acute hypoxic stimulus (2.5 or 5.0 mg·L-1 O2) was applied for 24 h to non-hatched embryos or early hatched alevins followed by a challenge test with a high carbohydrate diet at first-feeding. The effectiveness of the early hypoxic stimulus was confirmed by the induction of oxygen-sensitive markers such as egln3. At first-feeding, trout previously subjected to the 2.5 mg·L-1 O2 hypoxia displayed a strong induction of glycolytic and glucose transport genes, whereas these glucose metabolism-related genes were affected much less in trout subjected to the less severe (5.0 mg·L-1 O2) hypoxia. Our results demonstrate that an acute hypoxic stimulus during early development can affect glucose metabolism in trout at first-feeding.


Assuntos
Glucose/metabolismo , Glicólise , Hipóxia/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Embrião não Mamífero/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Glucose/genética , Hipóxia/genética , Masculino , Oncorhynchus mykiss/embriologia , RNA Mensageiro/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-27475301

RESUMO

The concept of nutritional programming was investigated in order to enhance the use of dietary carbohydrates in gilthead seabream juveniles. We assessed the long-term effects of high-glucose stimuli, exerted at the larval stage, on the growth performance, nutrient digestibility and metabolic utilization and gene expression of seabream juveniles, challenged with a high-carbohydrate intake. During early development, a group of larvae (control, CTRL) were kept under a rich-protein-lipid feeding regime whereas another group (GLU) was subjected to high-glucose stimuli, delivered intermittently over time. At juvenile stage, triplicate groups (IBW: 2.5g) from each fish nutritional background were fed a high-protein (59.4%) low-carbohydrate (2.0%) diet before being subjected to a low-protein (43.0%) high-carbohydrate (33.0%) dietary challenge for 36-days. Fish from both treatments increased by 8-fold their initial body weight, but neither growth rate, feed intake, feed and protein efficiency, nutrient retention (except lipids) nor whole-body composition were affected (P˃0.05) by fish early nutritional history. Nutrient digestibility was also similar among both groups. The metabolic fate of (14)C-starch and (14)C-amino acids tracers was estimated; GLU juveniles showed higher absorption of starch-derived glucose in the gut, suggesting an enhanced digestion of carbohydrates, while amino acid use was not affected. Moreover, glucose was less used for de novo synthesis of hepatic proteins and muscle glycogen from GLU fish (P<0.05). Our metabolic data suggests that the early glucose stimuli may alter carbohydrate utilization in seabream juveniles.


Assuntos
Carboidratos da Dieta/administração & dosagem , Glucose/administração & dosagem , Dourada/metabolismo , Animais , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/metabolismo , Expressão Gênica , Glucose/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fígado/metabolismo , Redes e Vias Metabólicas , Músculos/metabolismo , Dourada/genética , Dourada/crescimento & desenvolvimento , Amido/administração & dosagem , Amido/metabolismo
13.
BMC Genomics ; 17: 449, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296167

RESUMO

BACKGROUND: The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. RESULTS: Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. CONCLUSIONS: This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Oncorhynchus mykiss/fisiologia , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Estudos de Associação Genética , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Transcriptoma
14.
PLoS One ; 11(2): e0149378, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26895186

RESUMO

Responses in micro-mineral metabolism to changes in dietary ingredient composition and inclusion of a micro-mineral premix (Fe, Cu, Mn, Zn and Se) were studied in rainbow trout. In a 2 x 2 factorial design, triplicate groups of rainbow trout (initial weight: 20 g) were fed over 12 weeks at 17°C a fishmeal-based diet (M) or a plant-ingredient based diet (V), with or without inclusion of a mineral premix. Trout fed the V vs. M diet had lower feed intake, growth, hepato-somatic index, apparent availability coefficient (AAC) of Fe, Cu, Mn and Zn and also lower whole body Se and Zn concentration, whereas whole body Fe and Cu and plasma Fe concentrations were higher. Feeding the V diet increased intestinal ferric reductase activity; at transcriptional level, hepatic hepcidin expression was down-regulated and ferroportin 1 was up-regulated. Transcription of intestinal Cu-transporting ATPases and hepatic copper transporter1 were higher in V0 compared to other groups. Among the hepatic metalo-enzyme activities assayed, only Se-dependent glutathione peroxidase was affected, being lower in V fed fish. Premix inclusion reduced the AAC of Fe, Cu and Zn; increased the whole body concentration of all micro- minerals; up-regulated hepatic hepcidin and down-regulated intestinal ferroportin 1 transcription; and reduced the transcription of Cu-transporting ATPases in the intestine. Overall, the regulation of micro-mineral metabolism in rainbow trout, especially Fe and Cu, was affected both by a change in ingredient composition and micro-mineral premix inclusion.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Minerais/metabolismo , Oncorhynchus mykiss/fisiologia , Animais , Expressão Gênica , Ferro/metabolismo , Fígado/metabolismo , Fatores de Alongamento de Peptídeos/genética , Transcrição Gênica
15.
J Exp Biol ; 218(Pt 16): 2610-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26089527

RESUMO

Using rainbow trout fed with low-fat or high-fat diets, we aimed to determine whether the response of food intake, mRNA abundance of hypothalamic neuropeptides involved in the metabolic regulation of food intake and fatty acid sensing systems in the hypothalamus and liver are similar to results previously observed when levels of specific fatty acids were raised by injection. Moreover, we also aimed to determine if the phosphorylation state of intracellular energy sensor 5'-AMP-activated protein kinase (AMPK), and proteins involved in cellular signaling such as protein kinase B (Akt) and target of rapamycin (mTOR) display changes that could be related to fatty acid sensing and the control of food intake. The increased levels of fatty acids in the hypothalamus and liver of rainbow trout fed with a high-fat diet only partially activated fatty acid sensing systems and did not elicit changes in food intake, suggesting that the fatty acid sensing response in fish is more dependent on the presence of specific fatty acids, such as oleate or octanoate, rather than to the global increase in fatty acids. We also obtained, for the first time in fish, evidence for the presence and function of energy sensors such as AMPK and proteins involved in cellular signaling, like mTOR and Akt, in the hypothalamus. These proteins in the hypothalamus and liver were generally activated in fish fed the high-fat versus low-fat diet, suggesting that cellular signaling pathways are activated in response to the increased availability of fatty acids.


Assuntos
Gorduras na Dieta/metabolismo , Ingestão de Alimentos/fisiologia , Oncorhynchus mykiss/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Hipotálamo/metabolismo , Fígado/química , Fígado/metabolismo , Neuropeptídeos/metabolismo , RNA Mensageiro/metabolismo
16.
Br J Nutr ; 113(3): 403-13, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25609020

RESUMO

Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹4C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹4C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.


Assuntos
Carboidratos da Dieta/administração & dosagem , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Peixe-Zebra/embriologia , Animais , Radioisótopos de Carbono , Proteínas Alimentares/administração & dosagem , Gema de Ovo/efeitos dos fármacos , Frutose-Bifosfatase/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gluconeogênese , Glucose/administração & dosagem , Glicólise , Hexoquinase/genética , Microinjeções , Fosfofrutoquinases/genética , Peixe-Zebra/metabolismo
17.
Br J Nutr ; 112(4): 493-503, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24877663

RESUMO

Methionine is a limiting essential amino acid in most plant-based ingredients of fish feed. In the present study, we aimed to determine the effect of dietary methionine concentrations on several main factors involved in the regulation of mRNA translation and the two major proteolytic pathways (ubiquitin-proteasome and autophagy-lysosomal) in the white muscle of rainbow trout (Oncorhynchus mykiss). The fish were fed for 6 weeks one of the three isonitrogenous diets providing three different methionine concentrations (deficient (DEF), adequate (ADQ) and excess (EXC)). At the end of the experiment, the fish fed the DEF diet had a significantly lower body weight and feed efficiency compared with those fed the EXC and ADQ diets. This reduction in the growth of fish fed the DEF diet was accompanied by a decrease in the activation of the translation initiation factors ribosomal protein S6 and eIF2α. The levels of the main autophagy-related markers (LC3-II and beclin 1) as well as the expression of several autophagy genes (atg4b, atg12 l, Uvrag, SQSTM1, Mul1 and Bnip3) were higher in the white muscle of fish fed the DEF diet. Similarly, the mRNA levels of several proteasome-related genes (Fbx32, MuRF2, MuRF3, ZNF216 and Trim32) were significantly up-regulated by methionine limitation. Together, these results extend our understanding of mechanisms regulating the reduction of muscle growth induced by dietary methionine deficiency, providing valuable information on the biomarkers of the effects of low-fishmeal diets.


Assuntos
Dieta/veterinária , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metionina/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Musculares/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Aquicultura , Autofagia , Biomarcadores/metabolismo , Deficiências Nutricionais/metabolismo , Deficiências Nutricionais/patologia , Deficiências Nutricionais/fisiopatologia , Deficiências Nutricionais/veterinária , Dieta/efeitos adversos , Ingestão de Energia , Doenças dos Peixes/etiologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/fisiopatologia , Proteínas de Peixes/genética , França , Lisossomos/metabolismo , Metionina/administração & dosagem , Metionina/deficiência , Desenvolvimento Muscular , Fibras Musculares de Contração Rápida/patologia , Proteínas Musculares/genética , Doenças Musculares/etiologia , Doenças Musculares/veterinária , Oncorhynchus mykiss/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Aumento de Peso
18.
J Exp Biol ; 217(Pt 7): 1139-49, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24363414

RESUMO

Some fish show a low metabolic ability to use dietary carbohydrates. The use of early nutritional stimuli to program metabolic pathways in fish is ill defined. Therefore, studies were undertaken with zebrafish to assess the effect of high glucose levels during the embryonic stage as a lifelong modulator of genes involved in carbohydrate metabolism. Genes related to carbohydrate metabolism were expressed at low levels at 0.2 and 1 day post-fertilization (dpf). However, from 4 dpf onwards there was a significant increase on expression of all genes, suggesting that all analysed pathways were active. By microinjection, we successfully enriched zebrafish egg yolk with glucose (a 43-fold increase of basal levels). Acute effects of glucose injection on gene expression were assessed in larvae up to 10 dpf, and the programming concept was evaluated in juveniles (41 dpf) challenged with a hyperglucidic diet. At 4 dpf, larvae from glucose-enriched eggs showed a downregulation of several genes related to glycolysis, glycogenolysis, lipogenesis and carbohydrate digestion in comparison with control (saline-injected) embryos. This inhibitory regulation was suppressed after 10 dpf. At the juvenile stage, and upon switching from a low to a high digestible carbohydrate diet, early glucose enrichment had no significant effect on most analysed genes. However, these same fish showed altered expression of the genes for cytosolic phosphoenolpyruvate carboxykinase, sodium-dependent glucose cotransporter 1 and glycogen synthase, suggesting changes to the glucose storage capacity in muscle and glucose production and transport in viscera. Overall, supplementation of egg yolk with high glucose levels had little effect on the long-term modulation of carbohydrate metabolic genes in zebrafish.


Assuntos
Metabolismo dos Carboidratos , Embrião não Mamífero/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Carboidratos da Dieta , Gema de Ovo/metabolismo , Expressão Gênica , Glucose/metabolismo , Larva
19.
PLoS One ; 8(8): e72757, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991148

RESUMO

Compromisation of food intake when confronted with diets deficient in essential amino acids is a common response of fish and other animals, but the underlying physiological factors are poorly understood. We hypothesize that oxygen consumption of fish is a possible physiological factor constraining food intake. To verify, we assessed the food intake and oxygen consumption of rainbow trout fed to satiation with diets which differed in essential amino acid (methionine and lysine) compositions: a balanced vs. an imbalanced amino acid diet. Both diets were tested at two water oxygen levels: hypoxia vs. normoxia. Trout consumed 29% less food under hypoxia compared to normoxia (p<0.001). Under both hypoxia and normoxia trout significantly reduced food intake by 11% and 16% respectively when fed the imbalanced compared to the balanced amino acid diet. Oxygen consumption of the trout per unit body mass remained identical for both diet groups not only under hypoxia but also under normoxia (p>0.05). This difference in food intake between diets under normoxia together with the identical oxygen consumption supports the hypothesis that food intake in fish can be constrained by a set-point value of oxygen consumption, as seen here on a six-week time scale.


Assuntos
Aminoácidos Essenciais/administração & dosagem , Ração Animal/análise , Ingestão de Energia , Oncorhynchus mykiss/fisiologia , Consumo de Oxigênio , Aminoácidos Essenciais/análise , Animais , Composição Corporal
20.
J Nutr ; 143(6): 781-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23616505

RESUMO

This study investigated the hypothesis that the voluntary feed intake in fish is regulated by diet-induced differences in oxygen use. Four diets were prepared with a similar digestible protein:digestible energy ratio (18 mg/kJ), but which differed in the composition of nonprotein energy source. This replacement of fat (F) by starch (S) was intended to create a diet-induced difference in oxygen use (per unit of feed): diets F30-S70, F50-S50, F65-S35, and F80-S20 with digestible fat providing 28, 49, 65, and 81% of the nonprotein digestible energy (NPDE), respectively. Each diet was fed to satiation to triplicate groups of 20 rainbow trout for 6 wk. As expected, diet-induced oxygen use decreased linearly (R(2) = 0.89; P < 0.001) with increasing NPDE as fat. The digestible and metabolizable energy intakes of trout slightly increased with increasing NPDE as fat (i.e., decreasing starch content) (R(2) = 0.30, P = 0.08; and R(2) = 0.34, P = 0.05, respectively). Oxygen consumption of trout fed to satiation declined with increasing dietary NPDE as fat (R(2) = 0.48; P = 0.01). The inverse relation between digestible energy intake of trout and the diet-induced oxygen use (R(2) = 0.33; P = 0.05) suggests a possible role of diet-induced oxygen use in feed intake regulation as shown by the replacement of dietary fat by starch.


Assuntos
Dieta/veterinária , Ingestão de Alimentos/fisiologia , Oncorhynchus mykiss/fisiologia , Consumo de Oxigênio/fisiologia , Animais , Composição Corporal , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Digestão/fisiologia , Ingestão de Energia , Metabolismo Energético , Nitrogênio/administração & dosagem , Amido/administração & dosagem , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...