Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33729153

RESUMO

Automated detection of complex animal behaviors remains a challenging problem in neuroscience, particularly for behaviors that consist of disparate sequential motions. Grooming is a prototypical stereotyped behavior that is often used as an endophenotype in psychiatric genetics. Here, we used mouse grooming behavior as an example and developed a general purpose neural network architecture capable of dynamic action detection at human observer-level performance and operating across dozens of mouse strains with high visual diversity. We provide insights into the amount of human annotated training data that are needed to achieve such performance. We surveyed grooming behavior in the open field in 2457 mice across 62 strains, determined its heritable components, conducted GWAS to outline its genetic architecture, and performed PheWAS to link human psychiatric traits through shared underlying genetics. Our general machine learning solution that automatically classifies complex behaviors in large datasets will facilitate systematic studies of behavioral mechanisms.


Behavior is one of the ultimate and most complex outputs of the body's central nervous system, which controls movement, emotion and mood. It is also influenced by a person's genetics. Scientists studying the link between behavior and genetics often conduct experiments using animals, whose actions can be more easily characterized than humans. However, this involves recording hours of video footage, typically of mice or flies. Researchers must then add labels to this footage, identifying certain behaviors before further analysis. This task of annotating video clips ­ similar to image captioning ­ is very time-consuming for investigators. But it could be automated by applying machine learning algorithms, trained with sufficient data. Some computer programs are already in use to detect patterns of behavior, however, there are some limitations. These programs could detect animal behavior (of flies and mice) in trimmed video clips, but not raw footage, and could not always accommodate different lighting conditions or experimental setups. Here, Geuther et al. set out to improve on these previous efforts to automate video annotation. To do so, they used over 1,250 video clips annotated by experienced researchers to develop a general-purpose neural network for detecting mouse behaviors. After sufficient training, the computer model could detect mouse grooming behaviors in raw, untrimmed video clips just as well as human observers could. It also worked with mice of different coat colors, body shapes and sizes in open field animal tests. Using the new computer model, Geuther et al. also studied the genetics underpinning behavior ­ far more thoroughly than previously possible ­ to explain why mice display different grooming behaviors. The algorithm analyzed 2,250 hours of video featuring over 60 kinds of mice and thousands of other animals. It found that mice bred in the laboratory groom less than mice recently collected from the wild do. Further analyses also identified genes linked to grooming traits in mice and found related genes in humans associated with behavioral disorders. Automating video annotation using machine learning models could alleviate the costs of running lengthy behavioral experiments and enhance the reproducibility of study results. The latter is vital for translating behavioral research findings in mice to humans. This study has also provided insights into the amount of human-annotated training data needed to develop high-performing computer models, along with new understandings of how genetics shapes behavior.


Assuntos
Comportamento Animal , Etologia/métodos , Asseio Animal , Aprendizado de Máquina , Redes Neurais de Computação , Animais , Etologia/instrumentação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
APL Bioeng ; 4(1): 016104, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32128471

RESUMO

Multi-agent biohybrid microrobotic systems, owing to their small size and distributed nature, offer powerful solutions to challenges in biomedicine, bioremediation, and biosensing. Synthetic biology enables programmed emergent behaviors in the biotic component of biohybrid machines, expounding vast potential benefits for building biohybrid swarms with sophisticated control schemes. The design of synthetic genetic circuits tailored toward specific performance characteristics is an iterative process that relies on experimental characterization of spatially homogeneous engineered cell suspensions. However, biohybrid systems often distribute heterogeneously in complex environments, which will alter circuit performance. Thus, there is a critically unmet need for simple predictive models that describe emergent behaviors of biohybrid systems to inform synthetic gene circuit design. Here, we report a data-driven statistical model for computationally efficient recapitulation of the motility dynamics of two types of Escherichia coli bacteria-based biohybrid swarms-NanoBEADS and BacteriaBots. The statistical model was coupled with a computational model of cooperative gene expression, known as quorum sensing (QS). We determined differences in timescales for programmed emergent behavior in BacteriaBots and NanoBEADS swarms, using bacteria as a comparative baseline. We show that agent localization and genetic circuit sensitivity strongly influence the timeframe and the robustness of the emergent behavior in both systems. Finally, we use our model to design a QS-based decentralized control scheme wherein agents make independent decisions based on their interaction with other agents and the local environment. We show that synergistic integration of synthetic biology and predictive modeling is requisite for the efficient development of biohybrid systems with robust emergent behaviors.

3.
Commun Biol ; 2: 124, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30937403

RESUMO

The ability to track animals accurately is critical for behavioral experiments. For video-based assays, this is often accomplished by manipulating environmental conditions to increase contrast between the animal and the background in order to achieve proper foreground/background detection (segmentation). Modifying environmental conditions for experimental scalability opposes ethological relevance. The biobehavioral research community needs methods to monitor behaviors over long periods of time, under dynamic environmental conditions, and in animals that are genetically and behaviorally heterogeneous. To address this need, we applied a state-of-the-art neural network-based tracker for single mice. We compare three different neural network architectures across visually diverse mice and different environmental conditions. We find that an encoder-decoder segmentation neural network achieves high accuracy and speed with minimal training data. Furthermore, we provide a labeling interface, labeled training data, tuned hyperparameters, and a pretrained network for the behavior and neuroscience communities.


Assuntos
Comportamento Animal/fisiologia , Abrigo para Animais , Locomoção/fisiologia , Redes Neurais de Computação , Animais , Feminino , Masculino , Camundongos , Camundongos Nus , Camundongos Obesos , Modelos Animais , Fotoperíodo
4.
ACS Synth Biol ; 7(4): 1030-1042, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29579377

RESUMO

Bacteria utilize diffusible signals to regulate population density-dependent coordinated gene expression in a process called quorum sensing (QS). While the intracellular regulatory mechanisms of QS are well-understood, the effect of spatiotemporal changes in the population configuration on the sensitivity and robustness of the QS response remains largely unexplored. Using a microfluidic device, we quantitatively characterized the emergent behavior of a population of swimming E. coli bacteria engineered with the lux QS system and a GFP reporter. We show that the QS activation time follows a power law with respect to bacterial population density, but this trend is disrupted significantly by microscale variations in population configuration and genetic circuit noise. We then developed a computational model that integrates population dynamics with genetic circuit dynamics to enable accurate (less than 7% error) quantitation of the bacterial QS activation time. Through modeling and experimental analyses, we show that changes in spatial configuration of swimming bacteria can drastically alter the QS activation time, by up to 22%. The integrative model developed herein also enables examination of the performance robustness of synthetic circuits with respect to growth rate, circuit sensitivity, and the population's initial size and spatial structure. Our framework facilitates quantitative tuning of microbial systems performance through rational engineering of synthetic ribosomal binding sites. We have demonstrated this through modulation of QS activation time over an order of magnitude. Altogether, we conclude that predictive engineering of QS-based bacterial systems requires not only the precise temporal modulation of gene expression (intracellular dynamics) but also accounting for the spatiotemporal changes in population configuration (intercellular dynamics).


Assuntos
Escherichia coli/fisiologia , Engenharia Genética/métodos , Percepção de Quorum/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Sítios de Ligação , Quimiotaxia/fisiologia , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/genética , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Microrganismos Geneticamente Modificados , Modelos Biológicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...