Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 10(1): 124-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25788932

RESUMO

Bacterial melanin, obtained from the mutant strain of Bacillus Thuringiensis, has been shown to promote recovery after central nervous system injury. It is hypothesized, in this study, that bacterial melanin can promote structural and functional recovery after peripheral nerve injury. Rats subjected to sciatic nerve transection were intramuscularly administered bacterial melanin. The sciatic nerve transected rats that did not receive intramuscular administration of bacterial melanin served as controls. Behavior tests showed that compared to control rats, the time taken for instrumental conditioned reflex recovery was significantly shorter and the ability to keep the balance on the rotating bar was significantly better in bacterial melanin-treated rats. Histomorphological tests showed that bacterial melanin promoted axon regeneration after sciatic nerve injury. These findings suggest that bacterial melanin exhibits neuroprotective effects on injured sciatic nerve, contributes to limb motor function recovery, and therefore can be used for rehabilitation treatment of peripheral nerve injury.

2.
Pathophysiology ; 19(2): 71-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22366100

RESUMO

Experiments were performed on 48 albino rats. Part of the experimental animals were initially trained to a balancing instrumental conditioned reflex (ICR). Unilateral bulbar pyramidotomy performed in all rats caused contralateral hemiparesis. On the next day following the operation 24 rats were injected intramuscularly with bacterial melanin solution. 12 of these rats were initially trained to ICR. Recovery periods of ICR and paralyzed hindlimb movements were registered for melanin injected rats (n=24) and for operated rats, not treated with melanin (n=24). In rats injected with bacterial melanin the posttraumatic recovery is shorter than in animals not treated with melanin. The fastest and complete recovery was registered in rats initially trained to ICR and injected after the operation with bacterial melanin. Electrophysiological experiments were performed in transected animals treated with melanin, transected animals without melanin treatment and intact animals. Spiking activity of motoneurons was registered in lumbar motoneurons of rats in response to high frequency stimulation above the corticospinal tract transection. Spiking activity was very similar in motoneurons of melanin injected and intact or non operated animals. In animals, not dosed with bacterial melanin after the operation, areactivity or no change in firing rate was registered in response to stimulus. Stimulation of the corticospinal tract of melanin injected rats produced potentiation of the motoneuronal firing rate and is an evidence of regeneration in corticospinal tract. Similarity in spiking activity of intact and melanin injected rats shows the recovery of conductance in pyramidal tract. Morphohistochemical examination was carried out to confirm the results of behavioral and electrophysiological experiments. Medulla slices were prepared to trace the regeneration of nerve fibers. Examination of transection area revealed that bacterial melanin increases vascularization, dilates the capillaries in nervous tissue and stimulates the process of sprouting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...