Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 89(5): 3434-45, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16100278

RESUMO

The kinetic parameters of single bonds between neural cell adhesion molecules were determined from atomic force microscope measurements of the forced dissociation of the homophilic protein-protein bonds. The analytical approach described provides a systematic procedure for obtaining rupture kinetics for single protein bonds from bond breakage frequency distributions obtained from single-molecule pulling experiments. For these studies, we used the neural cell adhesion molecule (NCAM), which was recently shown to form two independent protein bonds. The analysis of the bond rupture data at different loading rates, using the single-bond full microscopic model, indicates that the breakage frequency distribution is most sensitive to the distance to the transition state and least sensitive to the molecular spring constant. The analysis of bond failure data, however, motivates the use of a double-bond microscopic model that requires an additional kinetic parameter. This double-bond microscopic model assumes two independent NCAM-NCAM bonds, and more accurately describes the breakage frequency distribution, particularly at high loading rates. This finding agrees with recent surface-force measurements, which showed that NCAM forms two spatially distinct bonds between opposed proteins.


Assuntos
Microscopia de Força Atômica/métodos , Moléculas de Adesão de Célula Nervosa/química , Animais , Biofísica/métodos , Células CHO , Simulação por Computador , Cricetinae , Cinética , Funções Verossimilhança , Modelos Químicos , Modelos Estatísticos , Modelos Teóricos , Polietilenoglicóis/química , Pressão , Ligação Proteica , Software , Fatores de Tempo
2.
J Am Chem Soc ; 123(36): 8838-43, 2001 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-11535091

RESUMO

X-ray reflectivity, cyclic voltammetry, and scanning tunneling microscopy (STM) are used to examine the structure of alpha-SiW12O4(4-) or silicotungstic acid (STA) adsorbed on Ag(100) in acid solution. The voltammetry shows that STA passivates the Ag surface relative to electron transfer to a solution redox species. STM images reveal the formation of a series of lattice structures, one of which can be associated with a commensurate ( radical13x radical13)R33.69 degrees structural model. X-ray reflectivity measurements show uniquely that STA orients with its four-fold axis perpendicular to the Ag(100) surface and that the center of the STA molecule is 4.90 A above the top layer of the Ag substrate. Analysis of bond lengths leads to a footprint of STA on Ag(100), in which the four terminal O atoms are located near the hollow sites and have a Ag-O bond length of 2.06 A. This bond length is consistent with a strong covalent interaction between STA and the Ag surface.

3.
Anal Chem ; 73(13): 3193-7, 2001 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-11467573

RESUMO

This paper describes an improved method for filling microfluidic structures with aqueous solutions. The method, channel outgas technique (COT), is based on a filling procedure carried out at reduced pressures. This procedure is compared with previously reported methods in which microfluidic channels are filled either by using capillary forces or by applying a pressure gradient at one or more empty reservoirs. The technique has proven to be > 90% effective in eliminating the formation of bubbles within microfluidic networks. It can be applied to many devices, including those containing PDMS-terminated channel features, a single channel inlet, and three-dimensional arrays.

4.
Science ; 251(4990): 183-6, 1991 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17836948

RESUMO

The atomic force microscope (AFM) was used to image an electrode surface at atomic resolution while the electrode was under potential control in a fluid electrolyte. A new level of subtlety was observed for each step of a complete electrochemical cycle that started with an Au(111) surface onto which bulk Cu was electrodeposited. The Cu was stripped down to an underpotential-deposited monolayer and finally returned to a bare Au(111) surface. The images revealed that the underpotential-deposited monolayer has different structures in different electrolytes. Specifically, for a perchloric acid electrolyte the Cu atoms are in a close-packed lattice with a spacing of 0.29 +/- 0.02 nanometer (nm). For a sulfate electrolyte they are in a more open lattice with a spacing of 0.49 +/- 0.02 nm. As the deposited Cu layer grew thicker, the Cu atoms converged to a (111)-oriented layer with a lattice spacing of 0.26 +/- 0.02 nm for both electrolytes. A terrace pattern was observed during dissolution of bulk Cu. Images were obtained of an atomically resolved Cu monolayer in one region and an atomically resolved Au substrate in another in which a 30 degrees rotation of the Cu monolayer lattice from the Au lattice is clearly visible.

5.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA