Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sci Rep ; 13(1): 10990, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419997

RESUMO

Molecular-targeted imaging probes can be used with a variety of imaging modalities to detect diseased tissues and guide their removal. EGFR is a useful biomarker for a variety of cancers, because it is expressed at high levels relative to normal tissues. Previously, we showed the anti-EGFR antibody nimotuzumab can be used as a positron emission tomography and fluorescent imaging probe for EGFR positive cancers in mice. These imaging probes are currently in clinical trials for PET imaging and image-guided surgery, respectively. One issue with using antibody probes for imaging is their long circulation time and slow tissue penetration, which requires patients to wait a few days after injection before imaging or surgery, multiple visits and longer radiation exposure. Here, we generated a Fab2 fragment of nimotuzumab, by pepsin digestion and labeled it with IRDye800CW to evaluate its optical imaging properties. The Fab2 had faster tumor accumulation and clearance in mice relative to the nimotuzumab IgG. The fluorescent signal peaked at 2 h post injection and remained high until 6 h post injection. The properties of the Fab2 allow a higher signal to background to be obtained in a shorter time frame, reducing the wait time for imaging after probe infusion.


Assuntos
Neoplasias , Tomografia Computadorizada por Raios X , Camundongos , Animais , Linhagem Celular Tumoral , Anticorpos Monoclonais Humanizados , Imagem Óptica/métodos , Neoplasias/diagnóstico por imagem
2.
Mol Imaging Biol ; 25(2): 283-293, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35851673

RESUMO

PURPOSE: Our objectives were to develop a targeted microbubble with an anti-P-selectin aptamer and assess its ability to detect bowel inflammation in two murine models of acute colitis. PROCEDURES: Lipid-shelled microbubbles were prepared using mechanical agitation. A rapid copper-free click chemistry approach (azide-DBCO) was used to conjugate the fluorescent anti-P-selectin aptamer (Fluor-P-Ap) to the microbubble surface. Bowel inflammation was chemically induced using 2,4,6-trinitrobenzenesulfonic acid (TNBS) in both Balb/C and interleukin-10-deficient (IL-10 KO) mice. Mouse bowels were imaged using non-linear contrast mode following an i.v. bolus of 1 × 108 microbubbles. Each mouse received a bolus of aptamer-functionalized and non-targeted microbubbles. Mouse phenotypes and the presence of P-selectin were validated using histology and immunostaining, respectively. RESULTS: Microbubble labelling of Fluor-P-Ap was complete after 20 min at 37 ̊C. We estimate approximately 300,000 Fluor-P-Ap per microbubble and confirmed fluorescence using confocal microscopy. There was a significant increase in ultrasound molecular imaging signal from both Balb/C (p = 0.003) and IL-10 KO (p = 0.02) mice with inflamed bowels using aptamer-functionalized microbubbles in comparison to non-targeted microbubbles. There was no signal in healthy mice (p = 0.4051) using either microbubble. CONCLUSIONS: We constructed an aptamer-functionalized microbubble specific for P-selectin using a clinically relevant azide-DBCO click reaction, which could detect bowel inflammation in vivo. Aptamers have potential as a next generation targeting agent for developing cost-efficient and clinically translatable targeted microbubbles.


Assuntos
Interleucina-10 , Microbolhas , Camundongos , Animais , Azidas , Ultrassonografia/métodos , Inflamação , Imagem Molecular/métodos , Meios de Contraste
3.
Bioconjug Chem ; 33(5): 848-857, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35427123

RESUMO

Microbubbles are ultrasound contrast agents that can adhere to disease-related vascular biomarkers when functionalized with binding ligands such as antibodies or peptides. The biotin-streptavidin approach has predominantly been used as the microbubble labeling approach in preclinical imaging. However, due to the immunogenicity of avidin in humans, it is not suitable for clinical translation. What would aid clinical translation is a simple and effective microbubble functionalization approach that could be directly translated from animals to humans. We developed a targeted microbubble to P-selectin, a vascular inflammatory marker, labeled using a strain-promoted [3 + 2] azide-alkyne (azide-DBCO) reaction, comparing its ability to detect bowel inflammation to that of P-selectin targeted microbubbles labeled with a traditional biotin-streptavidin approach. Bowel inflammation was chemically induced using 2,4,6-trinitrobenzenesulfonic acid (TNBS) in Balb/C mice. Each mouse received both non-targeted and P-selectin targeted microbubbles (either biotin-streptavidin or azide-DBCO). Using the biotin-streptavidin reaction, there was a significant increase in the ultrasound molecular imaging signal in inflamed mice using P-selectin targeted (2.30 ± 0.91 a.u.) compared to isotype control microbubbles (1.14 ± 0.7 a.u.) (p = 0.009). Using the azide-DBCO reaction, there was a similar increase in the ultrasound molecular imaging signal in inflamed mice (2.54 ± 0.56 a.u) compared to the isotype control (0.44 ± 0.25 a.u) (p = 0.009). There were no significant differences between the two labeling approaches between non-targeted and P-selectin targeted microbubbles. Mouse inflammatory phenotypes and expression of P-selectin were validated using histology and immunostaining. We constructed P-selectin targeted microbubbles using an azide-DBCO click reaction, which could detect bowel inflammation in vivo. This reaction generated a similar ultrasound molecular imaging signal to biotin-strepavidin-labeled microbubbles. These data show the potential of click chemistry conjugation (azide-DBCO) as a quick, cost-efficient, and clinically translatable approach for developing targeted microbubbles.


Assuntos
Microbolhas , Selectina-P , Animais , Azidas , Biotina , Meios de Contraste/química , Inflamação/diagnóstico por imagem , Lipídeos , Camundongos , Imagem Molecular/métodos , Selectina-P/metabolismo , Estreptavidina , Ultrassonografia/métodos
4.
Cancers (Basel) ; 14(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053466

RESUMO

Tracking immune responses is complex due to the mixture of cell types, variability in cell populations, and the dynamic environment. Tissue biopsies and blood analysis can identify infiltrating and circulating immune cells; however, due to the dynamic nature of the immune response, these are prone to sampling errors. Non-invasive targeted molecular imaging provides a method to monitor immune response, which has advantages of providing whole-body images, being non-invasive, and allowing longitudinal monitoring. Three non-specific Fc-containing proteins were labeled with near-infrared dye IRDye800CW and used as imaging probes to assess tumor-infiltrating immune cells in FaDu and A-431 xenograft models. We showed that Fc domains localize to tumors and are visible by fluorescent imaging. This tumor localization appears to be based on binding tumor-associated immune cells and some xenografts showed higher fluorescent signals than others. The Fc domain alone bound to different human immune cell types. The Fc domain can be a valuable research tool to study innate immune response.

5.
Methods Mol Biol ; 2313: 127-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34478134

RESUMO

Phage display is commonly used to select target-binding antibody fragments from large libraries containing billions of unique antibody clones. In practice, selection outputs are often highly heterogenous, making it desirable to recover sequence information from the selected pool. Next Generation DNA Sequencing (NGS) enables the acquisition of sufficient sequencing reads to cover the pool diversity, however read-lengths are typically too short to capture paired antibody complementarity-determining regions (CDRs), which is needed to reconstruct target-binding antibody fragments. Here, we describe a simple in vitro protocol to bring the DNA encoding the antibody CDRs closer together. The final PCR product referred to as a "CDR strip" is suitable for short read-length NGS. In this method, phagemid ssDNA is recovered from antibody phage display biopanning and used as a template to create a heteroduplex with deletions between CDRs of interest. The shorter strand in the heteroduplex is preferentially PCR amplified to generate a CDR strip that is sequenced using NGS. We have also included a bioinformatics approach to analyze the CDR strip populations so that single antibody clones can be created from paired CDR sequences.


Assuntos
Análise de Sequência de DNA , Anticorpos , Bacteriófagos/genética , Regiões Determinantes de Complementaridade/genética , DNA/genética , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/genética
6.
Cancers (Basel) ; 13(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535661

RESUMO

Epidermal growth factor receptor I (EGFR) is overexpressed in many cancers. The extracellular domain of EGFR has four binding epitopes (domains I- IV). All clinically approved anti-EGFR antibodies bind to domain III. Imaging agents that bind to domains other than domain III of EGFR are needed for accurate quantification of EGFR, patient selection for anti-EGFR therapeutics and monitoring of response to therapies. We recently developed a domain II-specific antibody fragment 8709. In this study, we have evaluated the in vitro and in vivo properties of 89Zr-8709-scFv-Fc (105 kDa). We conjugated 8709-scFv-Fc with the deferoxamine (DFO) chelator and radiolabeled the DFO-8970-scFv with 89Zr. We evaluated the binding of 89Zr-DFO-8709-scFv-Fc in EGFR positive and negative cell lines DLD-1, MDA-MB-231 and MDA-MB-435, respectively, and in mouse xenograft models. Simultaneously, we have compared the binding of 89Zr-8709-scFv-Fc with 111In-nimotuzumab, a domain III anti-EGFR antibody. DFO-8709-scFv-Fc displayed similar cell binding specificity as 8709-scFv-Fc. Saturation cell binding assay and immunoreactive fraction showed that radiolabeling did not alter the binding of 8709-scFv-Fc. Biodistribution and microPET showed good uptake of 89Zr-8709-scFv-Fc in xenografts after 120 h post injection (p.i). and was domain-specific to EGFR domain II. 89Zr-8709-scFv-Fc did not compete for binding in vitro and in vivo with a known domain III binder nimotuzumab. The results show that 89Zr-8709-scFv-Fc is specific to domain II of EGFR making it favorable for quantification of EGFR in vivo, hence, patient selection and monitoring of response to treatment with anti-EGFR antibodies.

7.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233524

RESUMO

To develop imaging and therapeutic agents, antibodies are often conjugated randomly to a chelator/radioisotope or drug using a primary amine (NH2) of lysine or sulfhydryl (SH) of cysteine. Random conjugation to NH2 or SH groups can require extreme conditions and may affect target recognition/binding and must therefore be tested. In the present study, nimotuzumab was site-specifically labeled using ∆N-SpyCatcher/SpyTag with different chelators and radiometals. Nimotuzumab is a well-tolerated anti-EGFR antibody with low skin toxicities. First, ΔN-SpyCatcher was reduced using tris(2-carboxyethyl)phosphine (TCEP), which was followed by desferoxamine-maleimide (DFO-mal) conjugation to yield a reactive ΔN-SpyCatcher-DFO. The ΔN-SpyCatcher-DFO was reacted with nimotuzumab-SpyTag to obtain stable nimotuzumab-SpyTag-∆N-SpyCatcher-DFO. Radiolabeling was performed with 89Zr, and the conjugate was used for the in vivo microPET imaging of EGFR-positive MDA-MB-468 xenografts. Similarly, ∆N-SpyCatcher was conjugated to an eighteen-membered macrocyclic chelator macropa-maleimide and used to radiolabel nimotuzumab-SpyTag with actinium-225 (225Ac) for in vivo radiotherapy studies. All constructs were characterized using biolayer interferometry, flow cytometry, radioligand binding assays, HPLC, and bioanalyzer. MicroPET/CT imaging showed a good tumor uptake of 89Zr-nimotuzumab-SpyTag-∆N-SpyCatcher with 6.0 ± 0.6%IA/cc (n = 3) at 48 h post injection. The EC50 of 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher and 225Ac-control-IgG-SpyTag-∆N-SpyCatcher against an EGFR-positive cell-line (MDA-MB-468) was 3.7 ± 3.3 Bq/mL (0.04 ± 0.03 nM) and 18.5 ± 4.4 Bq/mL (0.2 ± 0.04 nM), respectively. In mice bearing MDA-MB-468 EGFR-positive xenografts, 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher significantly (p = 0.0017) prolonged the survival of mice (64 days) compared to 225Ac-control IgG (28.5 days), nimotuzumab (28.5 days), or PBS-treated mice (30 days). The results showed that the conjugation and labeling using SpyTag/∆N-SpyCatcher to nimotuzumab did not significantly (p > 0.05) alter the receptor binding of nimotuzumab compared with a non-specific conjugation approach. 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher was effective in vitro and in an EGFR-positive triple negative breast cancer xenograft model.

8.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007850

RESUMO

The engineering of T cells through expression of chimeric antigen receptors (CARs) against tumor-associated antigens (TAAs) has shown significant potential for use as an anti-cancer therapeutic. The development of strategies for flexible and modular CAR T systems is accelerating, allowing for multiple antigen targeting, precise programming, and adaptable solutions in the field of cellular immunotherapy. Moving beyond the fixed antigen specificity of traditional CAR T systems, the modular CAR T technology splits the T cell signaling domains and the targeting elements through use of a switch molecule. The activity of CAR T cells depends on the presence of the switch, offering dose-titratable response and precise control over CAR T cells. In this review, we summarize developments in universal or modular CAR T strategies that expand on current CAR T systems and open the door for more customizable T cell activity.


Assuntos
Imunoterapia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos Quiméricos/uso terapêutico , Antígenos de Neoplasias/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Engenharia Celular/tendências , Humanos , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia
9.
Sci Rep ; 10(1): 15040, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32901050

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Sci Rep ; 9(1): 11227, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375703

RESUMO

DNA damaging chemotherapies are successful in cancer therapy, however, the damage can be reversed by DNA repair mechanisms that may be up-regulated in cancer cells. We hypothesized that inhibiting RAD51, a protein involved in homologous recombination DNA repair, would block DNA repair and restore the effectiveness of DNA damaging chemotherapy. We used phage-display to generate a novel synthetic antibody fragment that bound human RAD51 with high affinity (KD = 8.1 nM) and inhibited RAD51 ssDNA binding in vitro. As RAD51 is an intracellular target, we created a corresponding intrabody fragment that caused a strong growth inhibitory phenotype on human cells in culture. We then used a novel cell-penetrating peptide "iPTD" fusion to generate a therapeutically relevant antibody fragment that effectively entered living cells and enhanced the cell-killing effect of a DNA alkylating agent. The iPTD may be similarly useful as a cell-penetrating peptide for other antibody fragments and open the door to numerous intracellular targets previously off-limits in living cells.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Reparo do DNA/efeitos dos fármacos , Fragmentos de Imunoglobulinas/uso terapêutico , Rad51 Recombinase/antagonistas & inibidores , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Humanos , Fragmentos de Imunoglobulinas/farmacologia , Biblioteca de Peptídeos
11.
Nucleic Acids Res ; 47(9): e50, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30854567

RESUMO

Next-generation sequencing (NGS) technologies have been employed in several phage display platforms for analyzing natural and synthetic antibody sequences and for identifying and reconstructing single-chain variable fragments (scFv) and antigen-binding fragments (Fab) not found by conventional ELISA screens. In this work, we developed an NGS-assisted antibody discovery platform by integrating phage-displayed, single-framework, synthetic Fab libraries. Due to limitations in attainable read and amplicon lengths, NGS analysis of Fab libraries and selection outputs is usually restricted to either VH or VL. Since this information alone is not sufficient for high-throughput reconstruction of Fabs, we developed a rapid and simple method for linking and sequencing all diversified CDRs in phage Fab pools. Our method resulted in a reliable and straightforward platform for converting NGS information into Fab clones. We used our NGS-assisted Fab reconstruction method to recover low-frequency rare clones from phage selection outputs. While previous studies chose rare clones for rescue based on their relative frequencies in sequencing outputs, we chose rare clones for reconstruction from less-frequent CDRH3 lengths. In some cases, reconstructed rare clones (frequency ∼0.1%) showed higher affinity and better specificity than high-frequency top clones identified by Sanger sequencing, highlighting the significance of NGS-based approaches in synthetic antibody discovery.


Assuntos
Técnicas de Visualização da Superfície Celular , Regiões Determinantes de Complementaridade/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anticorpos de Cadeia Única/genética , Afinidade de Anticorpos/genética , Bacteriófagos/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Biblioteca de Peptídeos
12.
Chembiochem ; 20(3): 319-328, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358052

RESUMO

Exploiting the innate modularity of proteins has allowed advances across the fields of synthetic biology and biotechnology. By using standardized protein components as building blocks, complex, multiprotein assemblies with sophisticated functions can be generated; feats previously not possible with strictly genetic-engineering approaches. The development of strategies for protein assembly is accelerating, pushing the boundaries of protein architecture. SpyTag and SpyCatcher protein ligase is a recent advance in this field that allows plug-and-play modularity by harnessing post-translational protein assembly. Herein, we review the latest applications of this powerful tool including novel enzyme assemblies, modularizing protein display, and the generation of antibody and antibody-like "devices" by using SpyTag/SpyCatcher technology.


Assuntos
Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Ligases/química
13.
Mol Imaging Biol ; 21(1): 54-66, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29948640

RESUMO

PURPOSE: Construction of antibody-based, molecular-targeted optical imaging probes requires the labeling of an antibody with a fluorophore. The most common method for doing this involves non-specifically conjugating a fluorophore to an antibody, resulting in poorly defined, heterogeneous imaging probes that often have suboptimal in vivo behavior. We tested a new strategy to site-specific label antibody-based imaging probes using the SpyCatcher/SpyTag protein ligase system. PROCEDURES: We used the SpyCatcher/SpyTag protein ligase system to site specifically label nimotuzumab, an anti-EGFR antibody and an anti-HER3 diabody. To prevent the labeling from interfering with antigen binding, we introduced the SpyTag and SpyCatcher at the C-terminus of the antibody and diabody, respectively. Expression and binding properties of the C-terminal antibody-SpyTag and diabody-SpyCatcher fusions were similar to the antibody and diabody, indicating that the SpyTag and SpyCatcher fusions were well tolerated at this position. Site-specific labeling of the antibody and diabody was performed in two steps. First, we labeled the SpyCatcher with IRDye800CW-Maleimide and the SpyTag with IRDye800CW-NHS. Second, we conjugated the IRDye800CW-SpyCatcher and the IRDye800CW-SpyTag to the antibody or diabody, respectively. We confirmed the affinity and specificity of the IRDye800CW-labeled imaging probes using biolayer interferometry and flow cytometry. We analyzed the in vivo biodistribution and tumor accumulation of the IRDye800CW-labeled nimotuzumab and anti-HER3 diabody in nude mice bearing xenografts that express EGFR and HER3, respectively. RESULTS: Expression and binding properties of the C-terminal antibody-SpyTag and diabody-SpyCatcher fusions were similar to the antibody and diabody, indicating that the SpyTag and SpyCatcher fusions were well tolerated at this position. We confirmed the affinity and specificity of the IRDye800CW-labeled imaging probes using biolayer interferometry and flow cytometry. We analyzed the in vivo biodistribution and tumor accumulation of the IRDye800CW-labeled nimotuzumab and anti-HER3 diabody in nude mice bearing xenografts that express EGFR and HER3, respectively. Site-specifically IRDye800CW-labeled imaging probes bound to their immobilized targets, cells expressing these targets, and selectively accumulated in xenografts. CONCLUSIONS: These results highlight the ease and utility of using the modular SpyTag/SpyCatcher protein ligase system for site-specific fluorescent labeling of protein-based imaging probes. Imaging probes labeled in this manner will be useful for optical imaging applications such as image-guided surgery and have broad application for other imaging modalities.


Assuntos
Lesão Pulmonar Aguda/diagnóstico , Anticorpos Monoclonais/metabolismo , Rastreamento de Células/métodos , Medições Luminescentes/métodos , Imagem Óptica/métodos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/terapia , Animais , Anticorpos Biespecíficos/metabolismo , Anticorpos Biespecíficos/farmacocinética , Anticorpos Monoclonais/farmacocinética , Transplante de Células/métodos , Células Cultivadas , Feminino , Imunofluorescência/métodos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Sobrevivência de Enxerto , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Xenoenxertos , Humanos , Ligases/genética , Ligases/metabolismo , Luciferases/genética , Luciferases/metabolismo , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Distribuição Tecidual , Transgenes
14.
Theranostics ; 8(17): 4856-4869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279742

RESUMO

In vivo imaging is influenced by the half-life, tissue penetration, biodistribution, and affinity of the imaging probe. Immunoglobulin G (IgG) is composed of discrete domains with known functions, providing a template for engineering antibody fragments with desired imaging properties. Here, we engineered antibody-based imaging probes, consisting of different combinations of antibody domains, labeled them with the near-infrared fluorescent dye IRDye800CW, and evaluated their in vivo imaging properties. Antibody-based imaging probes were based on an anti-HER3 antigen binding fragment (Fab) isolated using phage display. Methods: We constructed six anti-HER3 antibody-based imaging probes: a single chain variable fragment (scFv), Fab, diabody, scFv-CH3, scFv-Fc, and IgG. IRDye800CW-labeled, antibody-based probes were injected into nude mice bearing FaDu xenografts and their distribution to the xenograft, liver, and kidneys was evaluated. Results: These imaging probes bound to recombinant HER3 and to the HER3-positive cell line, FaDu. Small antibody fragments with molecular weight <60 kDa (scFv, diabody, and Fab) accumulated rapidly in the xenograft (maximum accumulation between 2-4 h post injection (hpi)) and cleared primarily through the kidneys. scFv-CH3 (80 kDa) had fast clearance and peaked in the xenograft between 2-3 hpi and cleared from xenograft in a rate comparable to Fab and diabody. IgG and scFv-Fc persisted in the xenografts for up to 72 hpi and distributed mainly to the xenograft and liver. The highest xenograft fluorescence signals were observed with IgG and scFv-Fc imaging probes and persisted for 2-3 days. Conclusion: These results highlight the utility of using antibody fragments to optimize clearance, tumor labeling, and biodistribution properties for developing anti-HER3 probes for image-guided surgery or PET imaging.


Assuntos
Benzenossulfonatos/administração & dosagem , Neoplasias da Mama/diagnóstico por imagem , Corantes Fluorescentes/administração & dosagem , Xenoenxertos/diagnóstico por imagem , Fragmentos de Imunoglobulinas/administração & dosagem , Indóis/administração & dosagem , Imagem Óptica/métodos , Receptor ErbB-3/análise , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos Nus
15.
Sci Rep ; 8(1): 10173, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976956

RESUMO

Streptococcus mutans and Streptococcus sobrinus are the main causative agents of human dental caries. Current strategies for treating caries are costly and do not completely eradicate them completely. Passive immunization using nonhuman antibodies against Streptococcal surface antigens has shown success in human trials, however they often invoke immune reactions. We used phage display to generate human antigen-binding fragments (Fabs) against S. mutans and S. sobrinus. These Fabs were readily expressed in E. coli and bound to the surface S. mutans and S. sobrinus. Fabs inhibited sucrose-induced S. mutans and S. sobrinus biofilm formation in vitro and a combination of S. mutans and S. sobrinus Fabs prevented dental caries formation in a rat caries model. These results demonstrated that S. mutans and S. sobrinus Fabs could be used in passive immunization strategies to prevent dental caries. In the future, this strategy may be applied towards a caries therapy, whereby Fabs are topically applied to the tooth surface.


Assuntos
Vacinas Bacterianas/imunologia , Cárie Dentária/prevenção & controle , Fragmentos Fab das Imunoglobulinas/imunologia , Streptococcus mutans/imunologia , Streptococcus sobrinus/imunologia , Animais , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Biofilmes , Clonagem Molecular , Cárie Dentária/etiologia , Cárie Dentária/microbiologia , Dieta Cariogênica/efeitos adversos , Modelos Animais de Doenças , Humanos , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Biblioteca de Peptídeos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
16.
Oncogene ; 37(30): 4073-4093, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29700392

RESUMO

Triple-negative breast cancer (TNBC) tumours that lack expression of oestrogen, and progesterone receptors, and do not overexpress the HER2 receptor represent the most aggressive breast cancer subtype, which is characterised by the resistance to therapy in frequently relapsing tumours and a high rate of patient mortality. This is likely due to the resistance of slowly proliferating tumour-initiating cells (TICs), and understanding molecular mechanisms that control TICs behaviour is crucial for the development of effective therapeutic approaches. Here, we present our novel findings, indicating that an intrinsically catalytically inactive member of the Eph group of receptor tyrosine kinases, EPHB6, partially suppresses the epithelial-mesenchymal transition in TNBC cells, while also promoting expansion of TICs. Our work reveals that EPHB6 interacts with the GRB2 adapter protein and that its effect on enhancing cell proliferation is mediated by the activation of the RAS-ERK pathway, which allows it to elevate the expression of the TIC-related transcription factor, OCT4. Consistent with this, suppression of either ERK or OCT4 activities blocks EPHB6-induced pro-proliferative responses. In line with its ability to trigger propagation of TICs, EPHB6 accelerates tumour growth, potentiates tumour initiation and increases TIC populations in xenograft models of TNBC. Remarkably, EPHB6 also suppresses tumour drug resistance to DNA-damaging therapy, probably by forcing TICs into a more proliferative, drug-sensitive state. In agreement, patients with higher EPHB6 expression in their tumours have a better chance for recurrence-free survival. These observations describe an entirely new mechanism that governs TNBC and suggest that it may be beneficial to enhance EPHB6 action concurrent with applying a conventional DNA-damaging treatment, as it would decrease drug resistance and improve tumour elimination.


Assuntos
Receptores da Família Eph/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Dano ao DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas ras/metabolismo
17.
Oncotarget ; 9(5): 6213-6227, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464066

RESUMO

Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody that is approved in many countries for the treatment of EGFR-positive cancers. Near infrared (NIR) fluorescent dye-labeled antibodies represent an attractive class of image-guided surgical probes because of their high specificity, tumor uptake, and low dissociation from tumor cells that express the antigen. In this study, we developed a NIR fluorescent dye-labeled nimotuzumab immunoconjugate, IRDye800CW-nimotuzumab, and evaluated in vitro binding with EGFR-positive cells, in vivo tumor uptake by NIR fluorescent imaging, and ex vivo biodistribution. There was no difference in binding between nimotuzumab and IRDye800CW-nimotuzumab to EGFR-positive cells. In mice bearing EGFR-positive xenografts, IRDye800CW-nimotuzumab uptake peaked at 4 days post injection and slowly decreased thereafter with high levels of accumulation still observed at 28 days post injection. In EGFR-positive xenografts, IRDye800CW-nimotuzumab showed more than 2-fold higher uptake in tumors compared to IRDye800CW-cetuximab. In addition, liver uptake of IRDye800CW-nimotuzumab was two-fold lower than cetuximab. The lower liver uptake of IRDye800CW-nimotuzumab could have implications on the selected dose for clinical trials of the immunoconjugate. In summary, this study shows that nimotuzumab is a good candidate for NIR fluorescent imaging and image-guided surgery.

18.
Chembiochem ; 18(22): 2247-2259, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-28884521

RESUMO

Synthetic antibody libraries have been used to generate antibodies with favorable biophysical and pharmacological properties. Here, we describe the design, construction, and validation of a phage-displayed antigen-binding fragment (Fab) library built on a modified trastuzumab framework with four fixed and two diversified complementarity-determining regions (CDRs). CDRs L1, L2, H1, and H2 were fixed to preserve the most commonly observed "canonical" CDR conformation preferred by the modified trastuzumab Fab framework. The library diversity was engineered within CDRs L3 and H3 by use of custom-designed trinucleotide phosphoramidite mixes and biased towards human antibody CDR sequences. The library contained ≈7.6 billion unique Fabs, and >95 % of the library correctly encoded both diversified CDR sequences. We used this library to conduct selections against the human epidermal growth factor receptor-3 extracellular domain (HER3-ECD) and compared the CDR diversity of the naïve library and the anti-HER3 selection pool by use of next-generation sequencing. The most commonly observed CDR combination isolated, named Her3-3, was overexpressed and purified in Fab and immunoglobulin G (IgG) formats. Fab HER3-3 bound to HER3-ECD with a KD value of 2.14 nm and recognized cell-surface HER3. Although HER3-3 IgG bound to cell-surface HER3, it did not inhibit the proliferation of HER3-positive cells. Near-infrared imaging showed that Fab HER3-3 selectively accumulated in a murine HER3-postive xenograft, thus providing a lead for the development of HER3 imaging probes.


Assuntos
Anticorpos/química , Regiões Determinantes de Complementaridade/química , Biblioteca de Peptídeos , Sequência de Aminoácidos , Anticorpos/imunologia , Células HEK293 , Humanos , Engenharia de Proteínas , Receptor ErbB-3/imunologia , Alinhamento de Sequência
19.
Chembiochem ; 18(22): 2217-2221, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-28891272

RESUMO

Efforts to engineer recombinant antibodies for specific diagnostic and therapy applications are time consuming and expensive, as each new recombinant antibody needs to be optimized for expression, stability, bio-distribution, and pharmacokinetics. We have developed a new way to construct recombinant antibody-like "devices" by using a bottom-up approach to build them from well-behaved discrete recombinant antibody domains or "parts". Studies on antibody structure and function have identified antibody constant and variable domains with specific functions that can be expressed in isolation. We used the SpyTag/SpyCatcher protein ligase to join these parts together, thereby creating devices with desired properties based on summed properties of parts and in configurations that cannot be obtained by using genetic engineering. This strategy will create optimized recombinant antibody devices at reduced costs and with shortened development times.


Assuntos
Anticorpos Monoclonais/metabolismo , Engenharia Genética , Ligases/metabolismo , Anticorpos Monoclonais/química , Ligases/química , Ligases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
Sci Rep ; 7(1): 1040, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28432350

RESUMO

Next generation sequencing is becoming the method of choice for functional genomic studies that use pooled shRNA or CRISPR libraries. A key challenge in sequencing these mixed-oligo libraries is that they are highly susceptible to hairpin and/or heteroduplex formation. This results in polyclonal, low quality, and incomplete reads and reduces sequencing throughput. Unfortunately, this challenge is significantly magnified in low-to-medium throughput bench-top sequencers as failed reads significantly perturb the maximization of sequence coverage and multiplexing capabilities. Here, we report a methodology that can be adapted to maximize the coverage on a bench-top, Ion PGM System for smaller shRNA libraries with high efficiency. This ligation-based, half-shRNA sequencing strategy minimizes failed sequences and is also equally amenable to high-throughput sequencers for increased multiplexing. Towards this, we also demonstrate that our strategy to reduce heteroduplex formation improves multiplexing capabilities of pooled CRISPR screens using Illumina NextSeq 500. Overall, our method will facilitate sequencing of pooled shRNA or CRISPR libraries from genomic DNA and maximize sequence coverage.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Flavonoides/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , RNA Interferente Pequeno , Análise de Sequência de RNA/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...