Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19622, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380004

RESUMO

Urinary tract infections (UTIs) are common and frequently precipitate delirium-like states. Advanced age coincident with the postmenopausal period is a risk factor for delirium following UTIs. We previously demonstrated a pathological role for interleukin-6 (IL-6) in mediating delirium-like phenotypes in a murine model of UTI. Estrogen has been implicated in reducing peripheral IL-6 expression, but it is unknown whether the increased susceptibility of postmenopausal females to developing delirium concomitant with UTIs reflects diminished effects of circulating estrogen. Here, we tested this hypothesis in a mouse model of UTI. Female C57BL/6J mice were oophorectomized, UTIs induced by transurethral inoculation of E. coli, and treated with 17ß-estradiol. Delirium-like behaviors were evaluated prior to and following UTI and 17ß-estradiol treatment. Compared to controls, mice treated with 17ß-estradiol had less neuronal injury, improved delirium-like behaviors, and less plasma and frontal cortex IL-6. In vitro studies further showed that 17ß-estradiol may also directly mediate neuronal protection, suggesting pleiotropic mechanisms of 17ß-estradiol-mediated neuroprotection. In summary, we demonstrate a beneficial role for 17ß-estradiol in ameliorating acute UTI-induced structural and functional delirium-like phenotypes. These findings provide pre-clinical justification for 17ß-estradiol as a therapeutic target to ameliorate delirium following UTI.


Assuntos
Delírio , Infecções Urinárias , Camundongos , Feminino , Animais , Escherichia coli , Modelos Animais de Doenças , Interleucina-6 , Camundongos Endogâmicos C57BL , Estradiol/farmacologia , Infecções Urinárias/tratamento farmacológico , Estrogênios/farmacologia , Fenótipo , Delírio/tratamento farmacológico
2.
Crit Care ; 26(1): 274, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100846

RESUMO

Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.


Assuntos
Lesão Pulmonar Aguda , Delírio , Lesão Pulmonar Induzida por Ventilação Mecânica , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Delírio/complicações , Modelos Animais de Doenças , Interleucina-6 , Camundongos , Fenótipo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
3.
Crit Care ; 26(1): 258, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030220

RESUMO

Acute kidney injury is a known clinical risk factor for delirium, an acute cognitive dysfunction that is commonly encountered in the critically ill population. In this comprehensive review of clinical and basic research studies, we detail the epidemiology, clinical implications, pathogenesis, and management strategies of patients with acute kidney injury-associated delirium. Specifically addressed are the pathological roles of endogenous toxin or drug accumulation, acute kidney injury-mediated neuroinflammation, and acute kidney injury-associated volume overload as discrete potential biological mechanisms of the condition. The optimization of clinical contributors and normalization of renal function are reviewed as pragmatic management strategies in addition to potential and emerging therapeutic approaches.


Assuntos
Injúria Renal Aguda , Delírio , Desequilíbrio Hidroeletrolítico , Estado Terminal , Humanos , Fatores de Risco
4.
Am J Respir Cell Mol Biol ; 65(4): 403-412, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34014798

RESUMO

Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model. There were two control groups, as follow: 1) spontaneously breathing or 2) anesthetized and mechanically ventilated with 10 cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours before inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. CC3 (cleaved caspase-3), a neuronal apoptosis marker, was significantly increased in the frontal (P < 0.001) and hippocampal (P < 0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared with control mice (P < 0.001). These findings were not related to cerebral hypoxia, and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (P < 0.01 and P < 0.0001, respectively) and anti-IL-6 receptor antibody (P < 0.05 and P < 0.0001, respectively) compared with saline VILI mice. In summary, VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with systemic IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.


Assuntos
Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Delírio/metabolismo , Interleucina-6/antagonistas & inibidores , Neurônios/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Delírio/tratamento farmacológico , Delírio/patologia , Modelos Animais de Doenças , Feminino , Lobo Frontal/lesões , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Hipocampo/lesões , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Camundongos , Neurônios/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
5.
J Cereb Blood Flow Metab ; 41(4): 693-706, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33210576

RESUMO

Adrenoceptor and calcium channel modulating medications are widely used in clinical practice for acute neurological and systemic conditions. It is generally assumed that the cerebrovascular effects of these drugs mirror that of their systemic effects - and this is reflected in how these medications are currently used in clinical practice. However, recent research suggests that there are distinct cerebrovascular-specific effects of these medications that are related to the unique characteristics of the cerebrovascular anatomy including the regional heterogeneity in density and distribution of adrenoceptor subtypes and calcium channels along the cerebrovasculature. In this review, we critically evaluate existing basic science and clinical research to discuss known and putative interactions between adrenoceptor and calcium channel modulating pharmacotherapies, the neurovascular unit, and cerebrovascular anatomy. In doing so, we provide a rationale for selecting vasoactive medications based on lesion location and lay a foundation for future investigations that will define neuroprotective paradigms of adrenoceptor and calcium channel modulating therapies to improve neurological outcomes in acute neurological and systemic disorders.


Assuntos
Adrenérgicos/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Receptores Adrenérgicos/efeitos dos fármacos , Animais , Humanos , Vasoconstritores/farmacologia , Vasoconstritores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...