Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 17(12): e10505, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898015

RESUMO

Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte-like fan-shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan-shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.


Assuntos
Actomiosina , Dictyostelium , Citoesqueleto de Actina , Actinas , Movimento Celular , Tração
2.
J R Soc Interface ; 16(161): 20190619, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31847757

RESUMO

During migration, eukaryotic cells can continuously change their three-dimensional morphology, resulting in a highly dynamic and complex process. Further complicating this process is the observation that the same cell type can rapidly switch between different modes of migration. Modelling this complexity necessitates models that are able to track deforming membranes and that can capture the intracellular dynamics responsible for changes in migration modes. Here we develop an efficient three-dimensional computational model for cell migration, which couples cell mechanics to a simple intracellular activator-inhibitor signalling system. We compare the computational results to quantitative experiments using the social amoeba Dictyostelium discoideum. The model can reproduce the observed migration modes generated by varying either mechanical or biochemical model parameters and suggests a coupling between the substrate and the biomechanics of the cell.


Assuntos
Movimento Celular/fisiologia , Dictyostelium/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Transdução de Sinais
3.
Elife ; 82019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31625907

RESUMO

Eukaryotic cells can migrate using different modes, ranging from amoeboid-like, during which actin filled protrusions come and go, to keratocyte-like, characterized by a stable morphology and persistent motion. How cells can switch between these modes is not well understood but waves of signaling events are thought to play an important role in these transitions. Here we present a simple two-component biochemical reaction-diffusion model based on relaxation oscillators and couple this to a model for the mechanics of cell deformations. Different migration modes, including amoeboid-like and keratocyte-like, naturally emerge through transitions determined by interactions between biochemical traveling waves, cell mechanics and morphology. The model predictions are explicitly verified by systematically reducing the protrusive force of the actin network in experiments using Dictyostelium discoideum cells. Our results indicate the importance of coupling signaling events to cell mechanics and morphology and may be applicable in a wide variety of cell motility systems.


Assuntos
Fenômenos Bioquímicos , Fenômenos Biomecânicos , Movimento Celular , Dictyostelium/fisiologia , Modelos Biológicos
4.
Soft Matter ; 15(9): 2043-2050, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30724956

RESUMO

Adhesive cell-substrate interactions are crucial for cell motility and are responsible for the necessary traction that propels cells. These interactions can also change the shape of the cell, analogous to liquid droplet wetting on adhesive substrates. To address how these shape changes affect cell migration and cell speed we model motility using deformable, 2D cross-sections of cells in which adhesion and frictional forces between cell and substrate can be varied separately. Our simulations show that increasing the adhesion results in increased spreading of cells and larger cell speeds. We propose an analytical model which shows that the cell speed is inversely proportional to an effective height of the cell and that increasing this height results in increased internal shear stress. The numerical and analytical results are confirmed in experiments on motile eukaryotic cells.


Assuntos
Adesão Celular , Movimento Celular , Molhabilidade , Dictyostelium/citologia , Modelos Biológicos
5.
Phys Rev Lett ; 117(7): 074501, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563968

RESUMO

We investigate experimentally the quenching of a liquid pancake, obtained through the impact of a water drop on a cold solid substrate (0 °C to -60 °C). We show that, below a certain substrate temperature, fractures appear on the frozen pancake and the crack patterns change from a 2D fragmentation regime to a hierarchical fracture regime as the thermal shock increases. The different regimes are discussed and the transition temperatures are estimated through classical fracture scaling arguments. Finally, a phase diagram presents how these regimes can be controlled by the drop impact parameters.

6.
Sci Rep ; 6: 25148, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27125240

RESUMO

In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...