Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142475

RESUMO

Ribosome profiling and mass spectroscopy have identified canonical and noncanonical translation initiation codons (TICs) that are upstream of the main translation initiation site and used to translate oncogenic proteins. There have previously been conflicting reports about the patterns of nucleotides that surround noncanonical TICs. Here, we use a Kozak Similarity Score algorithm to find that nearly all of these TICs have flanking nucleotides closely matching the Kozak sequence. Remarkably, the nucleotides flanking alternative noncanonical TICs are frequently closer to the Kozak sequence than the nucleotides flanking TICs used to translate the gene's main protein. Of note, the 5' untranslated region (5'UTR) of cancer-associated genes with an upstream TIC tend to be significantly longer than the same region in genes not associated with cancer. The presence of a longer-than-typical 5'UTR increases the likelihood of ribosome binding to upstream noncanonical TICs, and may be a distinguishing feature of a number of genes overexpressed in cancer. Noncanonical TICs that are located in the 5'UTR, although thought by some to be disadvantageous and suppressed by evolution, may translate oncogenic proteins because of their flanking nucleotides.


Assuntos
Neoplasias , Regiões 5' não Traduzidas/genética , Algoritmos , Códon/genética , Códon de Iniciação/genética , Humanos , Neoplasias/genética , Nucleotídeos , Iniciação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas/genética
2.
PLoS One ; 17(6): e0256411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35648796

RESUMO

A number of neurologic diseases associated with expanded nucleotide repeats, including an inherited form of amyotrophic lateral sclerosis, have an unconventional form of translation called repeat-associated non-AUG (RAN) translation. It has been speculated that the repeat regions in the RNA fold into secondary structures in a length-dependent manner, promoting RAN translation. Repeat protein products are translated, accumulate, and may contribute to disease pathogenesis. Nucleotides that flank the repeat region, especially ones closest to the initiation site, are believed to enhance translation initiation. A machine learning model has been published to help identify ATG and near-cognate translation initiation sites; however, this model has diminished predictive power due to its extensive feature selection and limited training data. Here, we overcome this limitation and increase prediction accuracy by the following: a) capture the effect of nucleotides most critical for translation initiation via feature reduction, b) implement an alternative machine learning algorithm better suited for limited data, c) build comprehensive and balanced training data (via sampling without replacement) that includes previously unavailable sequences, and d) split ATG and near-cognate translation initiation codon data to train two separate models. We also design a supplementary scoring system to provide an additional prognostic assessment of model predictions. The resultant models have high performance, with ~85-88% accuracy, exceeding that of the previously published model by >18%. The models presented here are used to identify translation initiation sites in genes associated with a number of neurologic repeat expansion disorders. The results confirm a number of sites of translation initiation upstream of the expanded repeats that have been found experimentally, and predict sites that are not yet established.


Assuntos
Esclerose Lateral Amiotrófica , Nucleotídeos , Esclerose Lateral Amiotrófica/genética , Códon de Iniciação , Humanos , Aprendizado de Máquina
3.
Nat Commun ; 12(1): 6025, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654821

RESUMO

A hexanucleotide repeat expansion GGGGCC in the non-coding region of C9orf72 is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Toxic dipeptide repeats (DPRs) are synthesized from GGGGCC via repeat-associated non-AUG (RAN) translation. Here, we develop C. elegans models that express, either ubiquitously or exclusively in neurons, 75 GGGGCC repeats flanked by intronic C9orf72 sequence. The worms generate DPRs (poly-glycine-alanine [poly-GA], poly-glycine-proline [poly-GP]) and poly-glycine-arginine [poly-GR]), display neurodegeneration, and exhibit locomotor and lifespan defects. Mutation of a non-canonical translation-initiating codon (CUG) upstream of the repeats selectively reduces poly-GA steady-state levels and ameliorates disease, suggesting poly-GA is pathogenic. Importantly, loss-of-function mutations in the eukaryotic translation initiation factor 2D (eif-2D/eIF2D) reduce poly-GA and poly-GP levels, and increase lifespan in both C. elegans models. Our in vitro studies in mammalian cells yield similar results. Here, we show a conserved role for eif-2D/eIF2D in DPR expression.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Caenorhabditis elegans/genética , Demência Frontotemporal/genética , Alanina , Animais , Arginina , Dipeptídeos/metabolismo , Feminino , Edição de Genes , Técnicas de Silenciamento de Genes , Glicina , Células HEK293 , Humanos , Pessoa de Meia-Idade , Neurônios Motores , Degeneração Neural , Prolina
4.
Artigo em Inglês | MEDLINE | ID: mdl-32217641

RESUMO

OBJECTIVE: To determine whether there are nuclear depletion and cellular mislocalization of RNA-binding proteins (RBPs) transactivation response DNA-binding protein of 43 kDa (TDP-43), fused in sarcoma (FUS), and polypyrimidine tract-binding protein (PTB) in MS, as is the case in amyotrophic lateral sclerosis (ALS) and oligodendrocytes infected with Theiler murine encephalomyelitis virus (TMEV), we examined MS lesions and in vitro cultured primary human brain-derived oligodendrocytes. METHODS: Nuclear depletion and mislocalization of TDP-43, FUS, and PTB are thought to contribute to the pathogenesis of ALS and TMEV demyelination. The latter findings prompted us to investigate these RBPs in the demyelinated lesions of MS and in in vitro cultured human brain-derived oligodendrocytes under metabolic stress conditions. RESULTS: We found (1) mislocalized TDP-43 in oligodendrocytes in active lesions in some patients with MS; (2) decreased PTB1 expression in oligodendrocytes in mixed active/inactive demyelinating lesions; (3) decreased nuclear expression of PTB2 in neurons in cortical demyelinating lesions; and (4) nuclear depletion of TDP-43 in oligodendrocytes under metabolic stress induced by low glucose/low nutrient conditions compared with optimal culture conditions. CONCLUSION: TDP-43 has been found to have a key role in oligodendrocyte function and viability, whereas PTB is important in neuronal differentiation, suggesting that altered expression and mislocalization of these RBPs in MS lesions may contribute to the pathogenesis of demyelination and neurodegeneration. Our findings also identify nucleocytoplasmic transport as a target for treatment.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Ligação a DNA/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Oligodendroglia/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Estresse Fisiológico , Adulto , Células Cultivadas , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Neurobiol Dis ; 136: 104702, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837419

RESUMO

Mutations in Cu/Zn superoxide dismutase (SOD1) cause ~20% of familial ALS (FALS), which comprises 10% of total ALS cases. In mutant SOD1- (mtSOD1-) induced ALS, misfolded aggregates of SOD1 lead to activation of the unfolded protein response/integrated stress response (UPR/ISR). Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a kinase that phosphorylates eukaryotic translation initiator factor 2α (p-eIF2α), coordinates the response by causing a global suppression of protein synthesis. Growth arrest and DNA damage 34 (GADD34) dephosphorylates p-eIF2α, allowing protein synthesis to return to normal. If the UPR/ISR is overwhelmed by the amount of misfolded protein, CCAAT/enhancer-binding homologous protein (CHOP) is activated leading to apoptosis. In the current study we investigated the effect of knocking down CHOP and GADD34 on disease of G93A and G85R mtSOD1 mice. Although a CHOP antisense oligonucleotide had no effect on survival, an intravenous injection of GADD34 shRNA encoded in adeno-associated virus 9 (AAV9) into neonatal G93A as well as neonatal G85R mtSOD1 mice led to a significantly increased survival. G85R mtSOD1 mice had a reduction in SOD1 aggregates/load, astrocytosis, and microgliosis. In contrast, there was no change in disease phenotype when GADD34 shRNA was delivered to older G93A mtSOD1 mice. Our current study shows that GADD34 shRNA is effective in ameliorating disease when administered to neonatal mtSOD1 mice. Targeting the UPR/ISR may be beneficial in mtSOD1-induced ALS as well as other neurodegenerative diseases in which misfolded proteins and ER stress have been implicated.


Assuntos
Esclerose Lateral Amiotrófica/genética , Técnicas de Silenciamento de Genes/métodos , Proteína Fosfatase 1/deficiência , Proteína Fosfatase 1/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/prevenção & controle , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Superóxido Dismutase-1/metabolismo
6.
PLoS Pathog ; 15(2): e1007574, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742696

RESUMO

TDP-43, an RNA-binding protein that is primarily nuclear and important in splicing and RNA metabolism, is mislocalized from the nucleus to the cytoplasm of neural cells in amyotrophic lateral sclerosis (ALS), and contributes to disease. We sought to investigate whether TDP-43 is mislocalized in infections with the acute neuronal GDVII strain and the persistent demyelinating DA strain of Theiler's virus murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus of Picornaviridae because: i) L protein of both strains is known to disrupt nucleocytoplasmic transport, including transport of polypyrimidine tract binding protein, an RNA-binding protein, ii) motor neurons and oligodendrocytes are targeted in both TMEV infection and ALS. TDP-43 phosphorylation, cleavage, and cytoplasmic mislocalization to an aggresome were observed in wild type TMEV-infected cultured cells, with predicted splicing abnormalities. In contrast, cells infected with DA and GDVII strains that have L deletion had rare TDP-43 mislocalization and no aggresome formation. TDP-43 mislocalization was also present in neural cells of TMEV acutely-infected mice. Of note, TDP-43 was mislocalized six weeks after DA infection to the cytoplasm of oligodendrocytes and other glial cells in demyelinating lesions of spinal white matter. A recent study showed that TDP-43 knock down in oligodendrocytes in mice led to demyelination and death of this neural cell [1], suggesting that TMEV infection mislocalization of TDP-43 and other RNA-binding proteins is predicted to disrupt key cellular processes and contribute to the pathogenesis of TMEV-induced diseases. Drugs that inhibit nuclear export may have a role in antiviral therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteinopatias TDP-43/metabolismo , Theilovirus/metabolismo , Animais , Autopsia , Linhagem Celular , Núcleo Celular , Células Cultivadas , Citoplasma , Proteínas de Ligação a DNA/fisiologia , Humanos , Camundongos , Transporte Proteico/fisiologia , Proteinopatias TDP-43/fisiopatologia , Theilovirus/patogenicidade
7.
Neurobiol Dis ; 121: 131-137, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176351

RESUMO

Mutations in Cu/Zn superoxide dismutase (SOD1) are the cause of ~20% of cases of familial ALS (FALS), which comprise ~10% of the overall total number of cases of ALS. Mutant (mt) SOD1 is thought to cause FALS through a gain and not loss in function, perhaps as a result of the mutant protein's misfolding and aggregation. Previously we used a phage display library to raise single chain variable fragment antibodies (scFvs) against SOD1, which were found to decrease aggregation of mtSOD1 and toxicity in vitro. In the present study, we show that two scFvs directed against SOD1 ameliorate disease in G93A mtSOD1 transgenic mice and also decrease motor neuron loss, microgliosis, astrocytosis, as well as SOD1 burden and aggregation. The results suggest that the use of antibodies or antibody mimetics directed against SOD1 may be a useful therapeutic direction in mtSOD1-induced FALS. Since studies suggest that wild type SOD1 may be misfolded similar to that seen with mtSOD1, this therapeutic direction may be effective in sporadic as well as FALS.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Anticorpos de Cadeia Única/administração & dosagem , Superóxido Dismutase/imunologia , Animais , Modelos Animais de Doenças , Feminino , Gliose/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/imunologia , Agregação Patológica de Proteínas/imunologia , Medula Espinal/imunologia , Medula Espinal/patologia , Superóxido Dismutase/genética
8.
Neurobiol Dis ; 116: 155-165, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29792928

RESUMO

Expansion of a hexanucleotide repeat (HRE), GGGGCC, in the C9ORF72 gene is recognized as the most common cause of familial amyotrophic lateral sclerosis (FALS), frontotemporal dementia (FTD) and ALS-FTD, as well as 5-10% of sporadic ALS. Despite the location of the HRE in the non-coding region (with respect to the main C9ORF72 gene product), dipeptide repeat proteins (DPRs) that are thought to be toxic are translated from the HRE in all three reading frames from both the sense and antisense transcript. Here, we identified a CUG that has a good Kozak consensus sequence as the translation initiation codon. Mutation of this CTG significantly suppressed polyglycine-alanine (GA) translation. GA was translated when the G4C2 construct was placed as the second cistron in a bicistronic construct. CRISPR/Cas9-induced knockout of a non-canonical translation initiation factor, eIF2A, impaired GA translation. Transfection of G4C2 constructs induced an integrated stress response (ISR), while triggering the ISR led to a continuation of translation of GA with a decline in conventional cap-dependent translation. These in vitro observations were confirmed in chick embryo neural cells. The findings suggest that DPRs translated from an HRE in C9ORF72 aggregate and lead to an ISR that then leads to continuing DPR production and aggregation, thereby creating a continuing pathogenic cycle.


Assuntos
Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/genética , Dipeptídeos/metabolismo , Biossíntese de Proteínas/fisiologia , Animais , Morte Celular/fisiologia , Embrião de Galinha , Células HEK293 , Humanos , Camundongos , Camundongos Knockout
9.
Neurobiol Dis ; 115: 115-126, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29627580

RESUMO

Here we report a gain in function for mutant (mt) superoxide dismutase I (SOD1), a cause of familial amyotrophic lateral sclerosis (FALS), wherein small soluble oligomers of mtSOD1 acquire a membrane toxicity. Phosphatidylglycerol (PG) lipid domains are selectively targeted, which could result in membrane damage or "toxic channels" becoming active in the bilayer. This PG-selective SOD1-mediated membrane toxicity is largely reversible in vitro by a widely-available FDA-approved surfactant and membrane-stabilizer P188. Treatment of G93ASOD1 transgenic mice with P188 significantly delayed symptoms onset, extended survival and decreased motoneuron death. The use of P188 or an analogue, which targets mtSOD1 misfolding-induced membrane toxicity, may provide a new direction for ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Membrana Celular/fisiologia , Mutação/fisiologia , Poloxâmero/uso terapêutico , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/efeitos dos fármacos , Poloxâmero/farmacologia , Tensoativos/farmacologia , Tensoativos/uso terapêutico
10.
Sci Rep ; 7: 41141, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120938

RESUMO

Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Chaperonas Moleculares/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Medula Espinal/metabolismo , Superóxido Dismutase-1/metabolismo , Acilação , Esclerose Lateral Amiotrófica/genética , Animais , Estudos de Casos e Controles , Células HEK293 , Humanos , Camundongos , Mutação , Ligação Proteica , Estabilidade Proteica , Superóxido Dismutase-1/genética
11.
J Biol Chem ; 288(30): 21606-17, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23760509

RESUMO

Mutations in Cu,Zn-superoxide dismutase (mtSOD1) cause familial amyotrophic lateral sclerosis (FALS), a neurodegenerative disease resulting from motor neuron degeneration. Here, we demonstrate that wild type SOD1 (wtSOD1) undergoes palmitoylation, a reversible post-translational modification that can regulate protein structure, function, and localization. SOD1 palmitoylation was confirmed by multiple techniques, including acyl-biotin exchange, click chemistry, cysteine mutagenesis, and mass spectrometry. Mass spectrometry and cysteine mutagenesis demonstrated that cysteine residue 6 was the primary site of palmitoylation. The palmitoylation of FALS-linked mtSOD1s (A4V and G93A) was significantly increased relative to that of wtSOD1 expressed in HEK cells and a motor neuron cell line. The palmitoylation of FALS-linked mtSOD1s (G93A and G85R) was also increased relative to that of wtSOD1 when assayed from transgenic mouse spinal cords. We found that the level of SOD1 palmitoylation correlated with the level of membrane-associated SOD1, suggesting a role for palmitoylation in targeting SOD1 to membranes. We further observed that palmitoylation occurred predominantly on disulfide-reduced as opposed to disulfide-bonded SOD1, suggesting that immature SOD1 is the primarily palmitoylated species. Increases in SOD1 disulfide bonding and maturation with increased copper chaperone for SOD1 expression caused a decrease in wtSOD1 palmitoylation. Copper chaperone for SOD1 overexpression decreased A4V palmitoylation less than wtSOD1 and had little effect on G93A mtSOD1 palmitoylation. These findings suggest that SOD1 palmitoylation occurs prior to disulfide bonding during SOD1 maturation and that palmitoylation is increased when disulfide bonding is delayed or decreased as observed for several mtSOD1s.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Células HEK293 , Humanos , Lipoilação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Oxirredução , Processamento de Proteína Pós-Traducional , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
12.
Neurobiol Dis ; 56: 74-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23607939

RESUMO

Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Fragmentos de Imunoglobulinas/farmacologia , Superóxido Dismutase/efeitos dos fármacos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Bacteriófago M13/genética , Biotinilação , Western Blotting , Morte Celular/efeitos dos fármacos , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Humanos , Superóxido Dismutase/genética , Superóxido Dismutase-1
13.
Neurobiol Dis ; 45(3): 831-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21930207

RESUMO

Point mutations in the gene encoding copper-zinc superoxide dismutase (SOD1) impart a gain-of-function to this protein that underlies 20-25% of all familial amyotrophic lateral sclerosis (FALS) cases. However, the specific mechanism of mutant SOD1 toxicity has remained elusive. Using the complementary techniques of atomic force microscopy (AFM), electrophysiology, and cell and molecular biology, here we examine the structure and activity of A4VSOD1, a mutant SOD1. AFM of A4VSOD1 reconstituted in lipid membrane shows discrete tetrameric pore-like structure with outer and inner diameters 12.2 and 3.0nm respectively. Electrophysiological recordings show distinct ionic conductances across bilayer for A4VSOD1 and none for wildtype SOD1. Mouse neuroblastoma cells exposed to A4VSOD1 undergo membrane depolarization and increases in intracellular calcium. These results provide compelling new evidence that a mutant SOD1 is capable of disrupting cellular homeostasis via an unregulated ion channel mechanism. Such a "toxic channel" mechanism presents a new therapeutic direction for ALS research.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ativação do Canal Iônico/genética , Mutação/genética , Superóxido Dismutase/genética , Alanina/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Fenômenos Biofísicos/genética , Biofísica/métodos , Cálcio/metabolismo , Linhagem Celular Tumoral , Estimulação Elétrica , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Bicamadas Lipídicas , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Membranas Artificiais , Camundongos , Microscopia de Força Atômica , Neuroblastoma/patologia , Técnicas de Patch-Clamp , Conformação Proteica , Superóxido Dismutase/química , Fatores de Tempo , Transfecção/métodos , Valina/genética
14.
J Virol ; 85(14): 7177-85, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21561911

RESUMO

Cellular apoptosis induced by viral genes can play a critical role in determining virulence as well as viral persistence. This form of cell death has been of interest with respect to Theiler's murine encephalomyelitis virus (TMEV) because the GDVII strain and members of the GDVII subgroup are highly neurovirulent, while the DA strain and members of the TO subgroup induce a chronic progressive inflammatory demyelination with persistence of the virus in the central nervous system. The TMEV L protein has been identified as important in the pathogenesis of Theiler's virus-induced demyelinating disease (TMEV-IDD). We now show that DA L is apoptotic following transfection of L expression constructs or following DA virus infection of HeLa cells; the apoptotic activity depends on the presence of the serine/threonine domain of L, especially a serine at amino acid 57. In contrast, GDVII L has little apoptotic activity following transfection of L expression constructs in HeLa cells and is antiapoptotic following GDVII infection of HeLa cells. Of note, both DA and GDVII L cleave caspase-3 in BHK-21 cells, although neither implements the full apoptotic machinery in this cell type as manifested by the induction of terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The differences in apoptotic activities of DA and GDVII L in varied cell types may play an important role in TMEV subgroup-specific disease phenotypes.


Assuntos
Apoptose/fisiologia , Theilovirus/fisiologia , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Células HeLa , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas Virais/química
15.
J Virol ; 84(3): 1348-54, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19923182

RESUMO

The DA strain and other members of the TO subgroup of Theiler's murine encephalomyelitis virus (TMEV) induce a persistent central nervous system infection associated with an inflammatory white matter demyelinating disease. TO subgroup strains synthesize an 18-kDa protein, L*, out of frame with the polyprotein from an initiation codon 13 nucleotides downstream from the polyprotein's AUG codon. We previously generated a mutant virus from our infectious DA full-length clone that has a change of the L* AUG codon to ACG (with no change in the polyprotein's amino acid sequence). Studies of this mutant virus showed that L* was key to the TO subgroup phenotype because the mutant had a decreased ability to persist and demyelinate. This work was initially called into question because a similar mutant derived from a different full-length DA infectious clone persisted and demyelinated similarly to wild-type DA virus (O. van Eyll and T. Michiels, J. Virol. 74:9071-9077, 2000). We now report that (i) the sequence of the L* coding region differs in the two infectious clones, resulting in a Ser or Leu as the predicted amino acid at position 93 of L* (with no change in the polyprotein's amino acid sequence), (ii) the difference in this amino acid is key to the phenotypic differences between the two mutants, and (iii) the change in amino acid 93 may affect L* phosphorylation. It is of interest that this amino acid only appears critical in determining the virus phenotype when L* is present in a significantly reduced amount (i.e., following translation from an ACG initiating codon).


Assuntos
Doenças Desmielinizantes/virologia , Theilovirus/fisiologia , Proteínas Virais/fisiologia , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Códon , Cricetinae , Primers do DNA , Camundongos , Theilovirus/química , Proteínas Virais/química , Proteínas Virais/genética
16.
J Neurovirol ; 15(5-6): 449-57, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19995130

RESUMO

Excessive glutamate neurotransmission has been implicated in neuronal injury in many disorders of the central nervous system (CNS), including human immunodeficiency virus (HIV)-associated dementia. Gp120IIIB is a strain of a HIV glycoprotein with specificity for the CXCR4 receptor that induces neuronal apoptosis in in vitro models of acquired immunodeficiency syndrome (AIDS)-induced neurodegeneration. Since the catabolism of the neuropeptide N-acetylaspartylglutamate (NAAG) by glutamate carboxypeptidase (GCP) II increases cellular glutamate, an event associated with excitotoxicity, we hypothesized that inhibition of GCP II may prevent gp120IIIB-induced cell death. Furthermore, through GCP II inhibition, increased NAAG may be neuroprotective via its agonist effects at the mGlu(3) receptor. To ascertain the therapeutic potential of GCP II inhibitors, embryonic day 17 hippocampal cultures were exposed to gp120IIIB in the presence of a potent and highly selective GCP II inhibitor, 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). 2-PMPA was found to abrogate gp120IIIB-induced toxicity in a dose-dependent manner. Additionally, 2-PMPA was neuroprotective when applied up to 2 h after the application of gp120IIIB. The abrogation of apoptosis by 2-PMPA was reversed with administration of mGlu(3) receptor antagonists and with antibodies to transforming growth factor (TGF)-beta. Further, consistent with the localization of GCP II, 2-PMPA failed to provide neuroprotection in the absence of glia. GCP II activity and its inhibition by 2-PMPA were confirmed in the hippocampal cultures using radiolabeled NAAG and high-performance liquid chromatography (HPLC) analysis. Taken together, these data suggest that GCP II is involved in mediating gp120-induced apoptosis in hippocampal neurons and GCP II inhibitors may have potential in the treatment of neuronal injury related to AIDS.


Assuntos
Complexo AIDS Demência/tratamento farmacológico , Glutamato Carboxipeptidase II/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/metabolismo , Neurônios , Compostos Organofosforados/farmacologia , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Glutamato Carboxipeptidase II/metabolismo , Hipocampo/citologia , Neuroglia/enzimologia , Neuroglia/patologia , Neuroglia/virologia , Neurônios/enzimologia , Neurônios/patologia , Neurônios/virologia , Fármacos Neuroprotetores/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
Neurobiol Dis ; 21(1): 194-205, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16084730

RESUMO

Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (FALS), and approximately 25% of FALS cases are caused by mutations in superoxide dismutase-1 (SOD1). Mutant (MT) SOD1 kills motor neurons because of the mutant protein's toxicity; however, the basis for toxicity is unknown. We electroporated wild-type (WT), truncated WT or MTSOD1 expression constructs into the chick embryo spinal cord. MTSOD1 and truncated WTSOD1 (as small as 36 amino acid residues in length) aggregated in the cytoplasm of cells and caused cell death. These results suggest that MTSOD1 and truncated WTSOD1 lead to neural cell death because of misfolding, and that SOD1 peptides, possibly as a result of proteolytic digestion of MTSOD, play a role in FALS pathogenesis. Electroporation of the chick embryo spinal cord is a useful system in which to investigate neurodegenerative diseases because it provides efficient delivery of genes into neural cells in situ within a living organism.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Apoptose , Neurônios/patologia , Medula Espinal/patologia , Superóxido Dismutase/genética , Animais , Proteínas de Bactérias/genética , Embrião de Galinha , Galinhas , Citoplasma/metabolismo , Eletroporação , Expressão Gênica , Humanos , Proteínas Luminescentes/genética , Mutação , Neurônios/metabolismo , Dobramento de Proteína , Medula Espinal/embriologia , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
18.
Brain Res ; 1003(1-2): 86-97, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15019567

RESUMO

The neuropathology of Parkinson's Disease has been modeled in experimental animals following MPTP treatment and in dopaminergic cells in culture treated with the MPTP neurotoxic metabolite, MPP(+). MPTP through MPP(+) activates the stress-activated c-Jun N-terminal kinase (JNK) pathway in mice and SH-SY5Y neuroblastoma cells. Recently, it was demonstrated that CEP-1347/KT7515 attenuated MPTP-induced nigrostriatal dopaminergic neuron degeneration in mice, as well as MPTP-induced JNK phosphorylation. Presumably, CEP-1347 acts through inhibition of at least one upstream kinase within the mixed lineage kinase (MLK) family since it has been shown to inhibit MLK 1, 2 and 3 in vitro. Activation of the MLK family leads to JNK activation. In this study, the potential role of MLK and the JNK pathway was examined in MPP(+)-induced cell death of differentiated SH-SY5Y cells using CEP-1347 as a pharmacological probe and dominant negative adenoviral constructs to MLKs. CEP-1347 inhibited MPP(+)-induced cell death and the morphological features of apoptosis. CEP-1347 also prevented MPP(+)-induced JNK activation in SH-SY5Y cells. Endogenous MLK 3 expression was demonstrated in SH-SY5Y cells through protein levels and RT-PCR. Adenoviral infection of SH-SY5Y cells with a dominant negative MLK 3 construct attenuated the MPP(+)-mediated increase in activated JNK levels and inhibited neuronal death following MPP(+) addition compared to cultures infected with a control construct. Adenoviral dominant negative constructs of two other MLK family members (MLK 2 and DLK) did not protect against MPP(+)-induced cell death. These studies show that inhibition of the MLK 3/JNK pathway attenuates MPP(+)-mediated SH-SY5Y cell death in culture and supports the mechanism of action of CEP-1347 as an MLK family inhibitor.


Assuntos
1-Metil-4-fenilpiridínio/antagonistas & inibidores , 1-Metil-4-fenilpiridínio/toxicidade , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Animais , Células CHO , Carbazóis/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Cricetinae , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
19.
Proc Natl Acad Sci U S A ; 100(16): 9554-9, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12876198

RESUMO

Approximately 10% of cases of amyotrophic lateral sclerosis (ALS), a progressive and fatal degeneration that targets motor neurons (MNs), are inherited, and approximately 20% of these cases of familial ALS (FALS) are caused by mutations of copper/zinc superoxide dismutase type 1. Glutamate excitotoxicity has been implicated as a mechanism of MN death in both ALS and FALS. In this study, we tested whether a neuroprotective strategy involving potent and selective inhibitors of glutamate carboxypeptidase II (GCPII), which converts the abundant neuropeptide N-acetylaspartylglutamate to glutamate, could protect MNs in an in vitro and animal model of FALS. Data suggest that the GCPII inhibitors prevented MN cell death in both of these systems because of the resultant decrease in glutamate levels. GCPII inhibition may represent a new therapeutic target for the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Carboxipeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neurônios/patologia , Adenoviridae/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Morte Celular , Sobrevivência Celular , Glutamato Carboxipeptidase II , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios/enzimologia , Fatores de Tempo
20.
J Neurochem ; 82(6): 1424-34, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12354290

RESUMO

Overexpression of gp120, the major coat protein of the HIV-1 virus, in central glial cells, or treatment of neurons with gp120 in culture, produces apoptotic neuronal death. Here we demonstrate that CEP-1347 (KT7515), an inhibitor of mixed lineage kinase 3 (MLK3), an upstream activator of JNK, inhibits gp120IIIB-induced apoptosis of hippocampal neurons. Furthermore, expression of wild type MLK3 in hippocampal pyramidal neurons enhanced gp120IIIB-induced neurotoxicity, whereas expression of a dominant negative MLK3 protected neurons from the toxic effects of the glycoprotein. These results indicate a role for MLK3 signaling in gp120IIIB-induced neuronal death, and suggest potential clinical utility of CEP-1347 in inhibiting the progression of AIDS dementia.


Assuntos
Proteína gp120 do Envelope de HIV/toxicidade , HIV-1 , MAP Quinase Quinase Quinases/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Antígenos CD4/farmacologia , Carbazóis/farmacologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Genes Dominantes , Hipocampo , Indóis/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neuroglia/citologia , Neurônios/citologia , Fármacos Neuroprotetores , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...