Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(4): 2548-2555, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31971783

RESUMO

This study compares the scaling behavior of membrane distillation (MD) with that of nanophotonics-enabled solar membrane distillation (NESMD). Previous research has shown that NESMD, due to its localized surface heating driven by photothermal membrane coatings, is an energy-efficient system for off-grid desalination; however, concerns remained regarding the scaling behavior of self-heating surfaces. In this work, bench-scale experiments were performed, using model brackish water, to compare the scaling propensity of NESMD with MD. The results showed NESMD to be highly resistant to scaling; a three times higher salt concentration factor (c/c0) was achieved in NESMD compared to MD without any decline in flux. Analyses of the scaling layer on NESMD membranes revealed that salt deposition was 1/4 of that observed for MD. Scaling resistance in NESMD is attributed to its lower operating temperature, which increases the solubility of common scalants and decreases salt precipitation rates. Precipitation kinetics measurements revealed an order of magnitude faster precipitation under heated conditions (62 °C, k = 8.7 × 10-2 s-1) compared to ambient temperature (22 °C, k = 7.1 × 10-3 s-1). These results demonstrate a distinct advantage of NESMD over MD for the treatment of high scaling potential water, where scaling is a barrier to high water recovery.


Assuntos
Destilação , Purificação da Água , Membranas Artificiais , Águas Salinas , Água
2.
Nanoscale Adv ; 1(8): 2953-2964, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133620

RESUMO

Herein, we report a facile method for the synthesis of platinum nanoparticles (PtNPs) about 2.25 nm in size by heating a solution of chloroplatinic acid and sodium rhodizonate. The PtNPs were synthesized in about 5 min. The PtNPs were supported on macroporous cellulose fibers that were obtained from Kimwipe paper (KWP). The cellulose fiber-supported PtNPs (PtNPs@KWP) exhibited excellent catalytic activity towards the reduction of organic pollutants [e.g. methyl orange (MO)] in the presence of hydrogen (H2) gas and formic acid (FA). FA and H2 gas were utilized as clean and alternative reducing agents. The reduction of MO was performed in two different types of water matrices viz. deionized water (DIW) and simulated fresh drinking water (FDW). In both water matrices, the FA mediated reduction of MO was found to be faster than the H2 gas-bubbled one. The PtNPs@KWP demonstrated excellent cycling stability without leaching the PtNPs or platinum ions into the solution for at least five cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...