Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 38(11): 1288-1297, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32541956

RESUMO

The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1ß), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.


Assuntos
Aterosclerose/microbiologia , Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Aterosclerose/sangue , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biomarcadores/metabolismo , Colesterol/sangue , Dieta Ocidental , Comportamento Alimentar , Feminino , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Fatores Imunológicos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Receptores de LDL/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transcrição Gênica
2.
J Am Chem Soc ; 140(45): 15516-15524, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30347143

RESUMO

Although the functional specificity and catalytic versatility of enzymes have been exploited in numerous settings, controlling the spatial and temporal activity of enzymes remains challenging. Here we describe an approach for programming the function of streptokinase (SK), a protein that is clinically used as a blood "clot buster" therapeutic. We show that the fibrinolytic activity resulting from the binding of SK to the plasma proenzyme plasminogen (Pg) can be effectively regulated (turned "OFF" and "ON") by installing an intrasteric regulatory feature using a DNA-linked protease inhibitor modification. We describe the design rationale, synthetic approach, and functional characterization of two generations of intrasterically regulated SK-Pg constructs and demonstrate dose-dependent and sequence-specific temporal control in fibrinolytic activity in response to short predesignated DNA inputs. The studies described establish the feasibility of a new enzyme-programming approach and serves as a step toward advancing a new generation of programmable enzyme therapeutics.


Assuntos
DNA/farmacologia , Desenho de Fármacos , Ativadores de Plasminogênio/farmacologia , Inibidores de Proteases/farmacologia , Estreptoquinase/antagonistas & inibidores , DNA/química , Humanos , Ativadores de Plasminogênio/síntese química , Ativadores de Plasminogênio/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Estreptoquinase/metabolismo
3.
Bioorg Med Chem Lett ; 28(16): 2754-2758, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29500066

RESUMO

We describe an isothermal, enzyme-free method to detect single nucleotide differences between oligonucleotides of close homology. The approach exploits kinetic differences in toe-hold-mediated, nucleic acid strand-displacement reactions to detect single nucleotide polymorphisms (SNPs) with essentially "digital" precision. The theoretical underpinning, experimental analyses, predictability, and accuracy of this new method are reported. We demonstrate detection of biologically relevant SNPs and single nucleotide differences in the let-7 family of microRNAs. The method is adaptable to microarray formats, as demonstrated with on-chip detection of SNP variants involved in susceptibility to the therapeutic agents abacavir, Herceptin, and simvastatin.


Assuntos
Pareamento Incorreto de Bases/genética , Técnicas Biossensoriais , Técnicas de Amplificação de Ácido Nucleico , Nucleotídeos/análise , Cinética , Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único/genética
4.
Biochemistry ; 57(1): 160-172, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28832127

RESUMO

Template-directed macromolecule synthesis is a hallmark of living systems. Inspired by this natural process, several fundamentally novel mechanisms for template-directed assembly of nucleic acid analogues have been developed. Although these approaches have broad significance, including potential applications in biotechnology and implications for the origins of life, there are unresolved challenges in how to characterize in detail the complex assembly equilibria associated with dynamic templated reactions. Here we describe mechanistic studies of template-directed dynamic assembly for thioester peptide nucleic acid (tPNA), an informational polymer that responds to selection pressures under enzyme-free conditions. To overcome some of the inherent challenges of mechanistic studies of dynamic oligomers, we designed, synthesized, and implemented tPNA-DNA conjugates. The DNA primer region affords a high level of control over the location and register of the tPNA backbone in relation to the template strand. We characterized the degree and kinetics of dynamic nucleobase mismatch correction at defined backbone positions. Furthermore, we report the fidelity of dynamic assembly in tPNA as a function of position along the peptide backbone. Finally, we present theoretical studies that explore the level of fidelity that can be expected for an oligomer having a given hybridization affinity in dynamic templated reactions and provide guidance for the future development of sequence self-editing polymers and materials. As our results demonstrate, the use of molecular conjugates of constitutionally static and dynamic polymers establishes a new methodology for expediting the characterization of the complex chemical equilibria that underlie the assembly of dynamic informational polymers.


Assuntos
Ácidos Nucleicos Peptídicos/química , Moldes Genéticos , Cromatografia Líquida de Alta Pressão , DNA/química , Cinética , Desnaturação de Ácido Nucleico , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/síntese química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
ACS Cent Sci ; 3(6): 639-646, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28691076

RESUMO

There is great interest in developing new modes of therapy for atherosclerosis to treat coronary heart disease and stroke, particularly ones that involve modulation of high-density lipoproteins (HDLs). Here, we describe a new supramolecular chemotype for altering HDL morphology and function. Guided by rational design and SAR-driven peptide sequence enumerations, we have synthesized and determined the HDL remodeling activities of over 80 cyclic d,l-α-peptides. We have identified a few distinct sequence motifs that are effective in vitro in remodeling human and mouse plasma HDLs to increase the concentration of lipid-poor pre-beta HDLs, which are key initial acceptors of cholesterol in the reverse cholesterol transport (RCT) process, and concomitantly promote cholesterol efflux from macrophage cells. Functional assays with various control peptides, such as scrambled sequences, linear and enantiomeric cyclic peptide variants, and backbone-modified structures that limit peptide self-assembly, provide strong support for the supramolecular mode of action. Importantly, when the lead cyclic peptide c[wLwReQeR] was administered to mice (ip), it also promoted the formation of small, lipid-poor HDLs in vivo, displayed good plasma half-life (∼6 h), did not appear to have adverse side effects, and exerted potent anti-inflammatory effects in an acute in vivo inflammation assay. Given that previously reported HDL remodeling peptides have been based on α-helical apoA-I mimetic architectures, the present study, involving a new structural class, represents a promising step toward new potential therapeutics to combat atherosclerosis.

6.
Bioorg Med Chem Lett ; 27(15): 3289-3293, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28648462

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is caused by inactivating mutations in the Survival of motor neuron 1 (SMN1) gene, resulting in decreased SMN protein expression. Humans possess a paralog gene, SMN2, which contains a splicing defect in exon 7 leading to diminished expression of full-length, fully functional SMN protein. Increasing SMN2 expression has been a focus of therapeutic development for SMA. Multiple studies have reported the efficacy of histone deacetylase inhibitors (HDACi) in this regard. However, clinical trials involving HDACi have been unsatisfactory, possibly because previous efforts to identify HDACi to treat SMA have employed non-neuronal cells as the screening platform. To address this issue, we generated an SMA-patient specific, induced pluripotent stem cell (iPSC) derived neuronal cell line that contains homogenous Tuj1+neurons. We screened a small library of cyclic tetrapeptide HDACi using this SMA neuronal platform and discovered compounds that elevate SMN2 expression by an impressive twofold or higher. These candidates are also capable of forming gems intranuclearly in SMA neurons, demonstrating biological activity. Our study identifies new potential HDACi therapeutics for SMA screened using a disease-relevant SMA neuronal cellular model.


Assuntos
Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Atrofia Muscular Espinal/tratamento farmacológico , Neurônios/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Atrofia Muscular Espinal/genética , Neurogênese , Neurônios/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Regulação para Cima/efeitos dos fármacos
7.
J Am Chem Soc ; 139(14): 5233-5241, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28326777

RESUMO

A thermodynamic approach to peptide macrocyclization inspired by the cyclization of non-ribosomal peptide aldehydes is presented. The method provides access to structurally diverse macrocycles by exploiting the reactivity of transient macrocyclic peptide imines toward inter- and intramolecular nucleophiles. Reactions are performed in aqueous media, in the absence of side chain protecting groups, and are tolerant of all proteinogenic functional groups. Macrocyclic products bearing non-native and rigidifying structural motifs, isotopic labels, and a variety of bioorthogonal handles are prepared, along with analogues of four distinct natural products. Structural interrogation of the linear and macrocyclic peptides using variable-temperature NMR and circular dichroism suggests that preorganization of linear substrates is not a prerequisite for macrocyclization.

8.
Chembiochem ; 18(1): 5-49, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27748555

RESUMO

Inhibition of histone deacetylase (HDAC) enzymes has emerged as a target for development of cancer chemotherapy. Four compounds have gained approval for clinical use by the Food and Drug Administration in the US, and several are currently in clinical trials. However, none of these compounds possesses particularly good isozyme selectivity, which would be a highly desirable feature in a tool compound. Whether selective inhibition of individual HDAC isozymes will provide improved drug candidates remains to be seen. Nevertheless, it has been speculated that using macrocyclic compounds to target HDAC enzymes might hold an advantage over the use of traditional hydroxamic-acid-containing inhibitors, which rely on chelation to the conserved active-site zinc ion. Here we review the literature on macrocyclic HDAC inhibitors obtained from natural sources and on structure-activity relationship studies inspired by these molecules, as well as on efforts aimed at fully synthetic macrocyclic HDAC inhibitors.


Assuntos
Produtos Biológicos/química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Compostos Macrocíclicos/química , Sítios de Ligação , Produtos Biológicos/síntese química , Produtos Biológicos/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/química , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/metabolismo , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Relação Estrutura-Atividade
9.
Astrobiology ; 15(9): 709-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26308392

RESUMO

Demonstrating plausible nonenzymatic polymerization mechanisms for prebiotic monomers represents a fundamental goal in prebiotic chemistry. While a great deal is now known about the potentially prebiotic synthesis of amino acids, our understanding of abiogenic polymerization processes to form polypeptides is less well developed. Here, we show that carbon disulfide (CS2), a component of volcanic emission and sulfide mineral weathering, and a widely used synthetic reagent and solvent, promotes peptide bond formation in modest yields (up to ∼20%) from α-amino acids under mild aqueous conditions. Exposure of a variety of α-amino acids to CS2 initially yields aminoacyl dithiocarbamates, which in turn generate reactive 2-thiono-5-oxazolidone intermediates, the thio analogues of N-carboxyanhydrides. Along with peptides, thiourea and thiohydantoin species are produced. Amino acid stereochemistry was preserved in the formation of peptides. Our findings reveal that CS2 could contribute to peptide bond formation, and possibly other condensation reactions, in abiogenic settings.


Assuntos
Dissulfeto de Carbono/química , Dipeptídeos/química , Água/química , Anaerobiose , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida de Alta Pressão , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
10.
J Lipid Res ; 55(10): 2053-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24975585

RESUMO

We have observed that molecular constructs based on multiple apoA-I mimetic peptides attached to a branched scaffold display promising anti-atherosclerosis functions in vitro. Building on these promising results, we now describe chronic in vivo studies to assess anti-atherosclerotic efficacy of HDL-like nanoparticles assembled from a trimeric construct, administered over 10 weeks either ip or orally to LDL receptor-null mice. When dosed ip, the trimer-based nanolipids markedly reduced plasma LDL-cholesterol levels by 40%, unlike many other apoA-I mimetic peptides, and were substantially atheroprotective. Surprisingly, these nanoparticles were also effective when administered orally at a dose of 75 mg/kg, despite the peptide construct being composed of l-amino acids and being undetectable in the plasma. The orally administered nanoparticles reduced whole aorta lesion areas by 55% and aortic sinus lesion volumes by 71%. Reductions in plasma cholesterol were due to the loss of non-HDL lipoproteins, while plasma HDL-cholesterol levels were increased. At a 10-fold lower oral dose, the nanoparticles were marginally effective in reducing atherosclerotic lesions. Intriguingly, analogous results were obtained with nanolipids of the corresponding monomeric peptide. These nanolipid formulations provide an avenue for developing orally efficacious therapeutic agents to manage atherosclerosis.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacologia , Nanopartículas/química , Receptores de LDL/metabolismo , Animais , Feminino , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Knockout , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Receptores de LDL/genética
11.
J Med Chem ; 57(6): 2169-96, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24168751

RESUMO

Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.


Assuntos
Apolipoproteína A-I/química , Aterosclerose/tratamento farmacológico , Sequência de Aminoácidos , Animais , Anticolesterolemiantes/síntese química , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacologia , Aterosclerose/prevenção & controle , Biomimética , Cardiotônicos/síntese química , Cardiotônicos/farmacologia , HDL-Colesterol/efeitos dos fármacos , Humanos , Modelos Moleculares , Mimetismo Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Acc Chem Res ; 46(12): 2955-65, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23898935

RESUMO

The lipid bilayer membranes are Nature's dynamic structural motifs that individualize cells and keep ions, proteins, biopolymers and metabolites confined in the appropriate location. The compartmentalization and isolation of these molecules from the external media facilitate the sophisticated functions and connections between the different biological processes accomplished by living organisms. However, cells require assistance from minimal energy shortcuts for the transport of molecules across membranes so that they can interact with the exterior and regulate their internal environments. Ion channels and pores stand out from all other possible transport mechanisms due to their high selectivity and efficiency in discriminating and transporting ions or molecules across membrane barriers. Nevertheless, the complexity of these smart "membrane holes" has driven researchers to develop simpler artificial structures with comparable performance to the natural systems. As a broad range of supramolecular interactions have emerged as efficient tools for the rational design and preparation of stable 3D superstructures, these results have stimulated the creativity of chemists to design synthetic mimics of natural active macromolecules and even to develop artificial structures with functions and properties. In this Account, we highlight results from our laboratories on the construction of artificial ion channel models that exploit the self-assembly of conformationally flat cyclic peptides (CPs) into supramolecular nanotubes. Because of the straightforward synthesis of the cyclic peptide monomers and the complete control over the internal diameter and external surface properties of the resulting hollow tubular suprastructure, CPs are the optimal candidates for the fabrication of ion channels. The ion channel activity and selective transport of small molecules by these structures are examples of the great potential that cyclic peptide nanotubes show for the construction of functional artificial transmembrane transporters. Our experience to date suggests that the next steps for achieving conceptual devices with better performance and selectivity will derive from the topological control over cyclic peptide assembly and the functionalization of the lumen.


Assuntos
Canais Iônicos/química , Modelos Biológicos , Nanotubos de Peptídeos/química , Peptídeos Cíclicos/química
13.
J Am Chem Soc ; 135(36): 13414-24, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23978057

RESUMO

We describe an approach for engineering peptide-lipid nanoparticles that function similarly to high-density lipoprotein (HDL). Branched, multivalent constructs, bearing multiple 23- or 16-amino-acid peptides, were designed, synthesized, and combined with phospholipids to produce nanometer-scale discoidal HDL-like particles. A variety of biophysical techniques were employed to characterize the constructs, including size exclusion chromatography, analytical ultracentrifuge sedimentation, circular dichroism, transmission electron microscopy, and fluorescence spectroscopy. The nanoparticles functioned in vitro (human and mouse plasma) and in vivo (mice) to rapidly remodel large native HDLs into small lipid-poor HDL particles, which are key acceptors of cholesterol in reverse cholesterol transport. Fluorescent labeling studies showed that the constituents of the nanoparticles readily distributed into native HDLs, such that the peptide constructs coexisted with apolipoprotein A-I (apoA-I), the main structural protein in HDLs. Importantly, nanolipid particles containing multivalent peptides promoted efficient cellular cholesterol efflux and were functionally superior to those derived from monomeric apoA-I mimetic peptides. The multivalent peptide-lipid nanoparticles were also remarkably stable toward enzymatic digestion in vitro and displayed long half-lives and desirable pharmacokinetic profiles in mice, providing a real practical advantage over previously studied linear or tandem helical peptides. Encouragingly, a two-week exploratory efficacy study in a widely used animal model for atherosclerosis research (LDLr-null mice) using nanoparticles constructed from a trimeric peptide demonstrated an exceptional 50% reduction in the plasma total cholesterol levels compared to the control group. Altogether, the studies reported here point to an attractive avenue for designing synthetic, HDL-like nanoparticles, with potential for treating atherosclerosis.


Assuntos
Lipoproteínas HDL/química , Nanopartículas/química , Peptídeos/química , Animais , Aterosclerose/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas HDL/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular , Nanopartículas/uso terapêutico , Peptídeos/sangue , Peptídeos/uso terapêutico , Receptores de LDL/deficiência
14.
ACS Med Chem Lett ; 3(6): 505-8, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24900500

RESUMO

Natural and synthetic histone deacetylase (HDAC) inhibitors generally derive their strong binding affinity and high potency from a key functional group that binds to the Zn(2+) ion within the enzyme active site. However, this feature is also thought to carry the potential liability of undesirable off-target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure-activity characterizations of cyclic α3ß-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn(2+)-binding group. The lead compounds (e.g., 15 and 26) display good potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3ß-tetrapeptide is a fast-on/off competitive inhibitor of HDACs 1-3 with K i values of 49, 33, and 37 nM, respectively. Our proof of principle study supports the idea that novel classes of HDAC inhibitors, which interact at the active-site opening, but not with the active site Zn(2+), can have potential in drug design.

15.
ACS Med Chem Lett ; 3(9): 749-53, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900543

RESUMO

We report the design, synthesis, and biological evaluation of the first macrocyclic peptoid-containing histone deacetylase (HDAC) inhibitors. The compounds selectively inhibit human class I HDAC isoforms in vitro, with no inhibition of the tubulin deacetylase activity associated with class IIb HDAC6 in cultured Jurkat cells. Compared to the natural product apicidin (1), one inhibitor (compound 10) showed equivalent potency against K-562 cells, but was more cytoselective across a panel of cancer cell lines.

16.
Chem Biol ; 18(11): 1453-62, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118679

RESUMO

Hepatitis C virus (HCV) infects chronically 3% of the world population and the current therapy against this pathogen is only partially effective. With the aim of developing novel antiviral strategies against HCV, we screened a D,L-α-peptide library using an unbiased methodology based on a cell culture infection system for HCV. We found a family of highly active amphiphilic eight-residue cyclic D,L-α-peptides that specifically blocked entry of all tested HCV genotypes into target cells at a postbinding step without affecting infection by other enveloped RNA viruses. Structure-activity relationship studies indicate that antiviral activity was dependent on cyclic D,L-α-peptide self-assembly processes and that, although they possess a net neutral charge, they display a characteristic charge distribution. Our results indicate that supramolecular amphiphilic peptide structures constitute a class of highly selective HCV entry inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Nanotubos de Peptídeos/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Biblioteca de Peptídeos , RNA Viral/análise , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
17.
ACS Med Chem Lett ; 2(9): 703-707, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21984958

RESUMO

Cystic fibrosis (CF) is a loss-of-function disease caused by mutations in the CF transmembrane conductance regulator (CFTR) protein, a chloride ion channel that localizes to the apical plasma membrane of epithelial cells. The most common form of the disease results from the deletion of phenylalanine-508 (ΔF508), leading to the accumulation of CFTR in the endoplasmic reticulum with a concomitant loss of chloride flux. We discovered that cyclic tetrapeptides, such as 11, 14, and 15, are able to correct the trafficking defect and restore cell surface activity of ΔF508-CFTR. Although this class of cyclic tetrapeptides is known to contain inhibitors of certain histone deacetylase (HDAC) isoforms, their HDAC inhibitory potencies did not directly correlate with their ability to rescue ΔF508-CFTR. In full HDAC profiling, 15 strongly inhibited HDACs 1, 2, 3, 10 and 11, but not HDACs 4-9. Although 15 had less potent IC(50) values than reference agent vorinostat (2) in HDAC profiling, it was markedly more potent than 2 in rescuing ΔF508-CFTR. We suggest that specific HDACs can have a differential influence on correcting ΔF508-CFTR, which may reflect both deacetylase and protein scaffolding actions.

19.
J Med Chem ; 52(23): 7836-46, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19705846

RESUMO

Histone deacetylase (HDAC) inhibitors are powerful tools in understanding epigenetic regulation and have proven especially promising for the treatment of various cancers, but the discovery of potent, isoform-selective HDAC inhibitors has been a major challenge. We recently developed a cyclic alpha(3)beta-tetrapeptide scaffold for the preparation of HDAC inhibitors with novel selectivity profiles ( J. Am. Chem. Soc. 2009 , 131 , 3033 ). In this study, we elaborate this scaffold with respect to side chain diversity by synthesizing one-bead-one-compound combinatorial libraries of cyclic tetrapeptide analogues and applying two generations of these focused libraries to the discovery of potent HDAC ligands using a convenient screening platform. Our studies led to the first HDAC6-selective cyclic tetrapeptide analogue, which extends the use of cyclic tetrapeptides to the class II HDAC isoforms. These findings highlight the persistent potential of cyclic tetrapeptides as epigenetic modulators and possible anticancer drug lead compounds.


Assuntos
Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Combinatória , Descoberta de Drogas , Células HeLa , Inibidores de Histona Desacetilases/síntese química , Histonas/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Células Jurkat , Modelos Moleculares , Conformação Molecular , Oligopeptídeos/síntese química , Peptídeos Cíclicos/síntese química , Relação Estrutura-Atividade , Especificidade por Substrato
20.
J Am Chem Soc ; 131(26): 9368-77, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19566101

RESUMO

Defined broadly, molecular translators are constructs that can convert any designated molecular input into a unique output molecule. In particular, the development of universal nucleic acid translators would be of significant practical value in view of the expanding biomedical importance of gene diagnostics. Currently, diagnostic assays for nucleic acids must be individually developed and optimized for each new sequence because inputs for one assay are sequence-specific and are therefore incompatible with any other assay designed for the detection of a different nucleic acid. However, if a desired nucleic acid sequence could be translated in vitro into a predetermined nucleic acid output for which there is already a known diagnostic assay, then that single assay could be easily adapted to detect nearly any strand. Here we investigate PCR-independent isothermal molecular translation strategies that function without the need for post-translation purification and can be implemented with commercially available components. Translation yields up to 96% are obtained in 5 min at room temperature with minimal background reaction (<1%) and with discrimination of single nucleotide polymorphisms in the input sequence. Furthermore, we apply these translators to adapt a high-gain HIV diagnostic system for high-throughput detection of hepatitis C, avian influenza (H5N1), and smallpox without making changes to the underlying assay. Finally, we show the feasibility of translating small-molecule interactions into nucleic acid outputs by demonstrating the utility of a DNA aptamer for translating adenosine into a readily detectable output DNA sequence. Additionally, equilibrium expressions are described in order to facilitate rational engineering of aptameric translators for label-free detection of any molecule that an aptamer can recognize.


Assuntos
Hepatite C/diagnóstico , Influenza Aviária/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Varíola/diagnóstico , Adenosina/genética , Animais , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Aves , DNA/análise , DNA/genética , Hepatite C/genética , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/genética , Polimorfismo de Nucleotídeo Único , RNA Viral/análise , RNA Viral/genética , Varíola/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...