Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1261-1271, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38293866

RESUMO

When a cell sustains damage, it liberates cytosolic ATP, which can serve as an injury signal, affecting neighboring cells. This study presents a methodological approach that employs in vitro axotomy and in vivo laser ablation to simulate cellular injury. Specially tailored biosensors are employed to monitor ATP dynamics and calcium transients in injured cells and their surroundings. To simultaneously visualize extracellular and cytosolic ATP, we developed bicistronic constructs featuring GRABATP1.0 and MaLionR biosensors alongside the calcium sensor RCaMP, enabling multiparametric imaging. In addition to transducing primary neuron cultures, we developed another method where we cocultured dorsal root ganglion neurons together with specialized "sniffer" cell lines expressing the bicistronic biosensors. Exploiting these approaches, we successfully demonstrated the release of ATP from the injured neurons and its extracellular diffusion in response to cellular injury in vitro and in vivo. Axotomy triggered intracellular calcium mobilization not only in the injured neuron but also in the intact neighboring cells, providing new insights into ATP's role as an injury signal. The tools developed in this study have demonstrated remarkable efficiency in unraveling the intricacies of ATP-mediated injury signaling.


Assuntos
Técnicas Biossensoriais , Cálcio , Ratos , Animais , Cálcio/metabolismo , Ratos Sprague-Dawley , Neurônios/metabolismo , Trifosfato de Adenosina
2.
J Am Chem Soc ; 145(22): 11899-11902, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222194

RESUMO

Chemogenetic Operation of iNTRacellular prOton Levels (pH-Control) is a novel substrate-based enzymatic method that enables precise spatiotemporal control of ultralocal acidification in cultured cell lines and primary neurons. The genetically encoded biosensor SypHer3s showed that pH-Control effectively acidifies cytosolic, mitochondrial, and nuclear pH exclusively in the presence of ß-chloro-d-alanine in living cells in a concentration-dependent manner. The pH-Control approach is promising for investigating the ultralocal pH imbalance associated with many diseases.


Assuntos
Prótons , Concentração de Íons de Hidrogênio , Linhagem Celular , Homeostase , Citosol/metabolismo
3.
Biochem Soc Trans ; 50(1): 335-345, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35015078

RESUMO

Chemogenetic tools are recombinant enzymes that can be targeted to specific organelles and tissues. The provision or removal of the enzyme substrate permits control of its biochemical activities. Yeast-derived enzyme D-amino acid oxidase (DAAO) represents the first of its kind for a substrate-based chemogenetic approach to modulate H2O2 concentrations within cells. Combining these powerful enzymes with multiparametric imaging methods exploiting genetically encoded biosensors has opened new lines of investigations in life sciences. In recent years, the chemogenetic DAAO approach has proven beneficial to establish a new role for (patho)physiological oxidative stress on redox-dependent signaling and metabolic pathways in cultured cells and animal model systems. This mini-review covers established or emerging methods and assesses newer approaches exploiting chemogenetic tools combined with genetically encoded biosensors.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Animais , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...