Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 26(6): 816-837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37994831

RESUMO

Glyphosate (Gly) and its formulations are broad-spectrum herbicides globally used for pre- and post-emergent weed control. Glyphosate has been applied to terrestrial and aquatic ecosystems. Critics have claimed that Gly-treated plants have altered mineral nutrition and increased susceptibility to plant pathogens because of Gly ability to chelate divalent metal cations. Still, the complete resistance of Gly indicates that chelation of metal cations does not play a role in herbicidal efficacy or have a substantial impact on mineral nutrition. Due to its extensive and inadequate use, this herbicide has been frequently detected in soil (2 mg kg-1, European Union) and in stream water (328 µg L-1, USA), mostly in surface (7.6 µg L-1, USA) and groundwater (2.5 µg L-1, Denmark). International Agency for Research on Cancer (IARC) already classified Gly as a category 2 A carcinogen in 2016. Therefore, it is necessary to find the best degradation techniques to remediate soil and aquatic environments polluted with Gly. This review elucidates the effects of Gly on humans, soil microbiota, plants, algae, and water. This review develops deeper insight toward the advances in Gly biodegradation using microbial communities. This review provides a thorough understanding of Gly interaction with mineral elements and its limitations by interfering with the plants biochemical and morphological attributes.


Glyphosate (Gly) contamination in water, soil, and crops is an eminent threat globally. Various advanced and integrated approaches have been reported to remediate Gly contamination from the water-soil-crop system. This review elucidates the effects of Gly on human health, soil microbial communities, plants, algae, and water. This review develops deeper insight into the advances in Gly biodegradation using microbial communities, particularly soil microbiota. This review provides a brief understanding of Gly interaction with mineral elements and its limitations in interfering with the plants biochemical and morphological attributes.


Assuntos
Herbicidas , Microbiota , Humanos , Glifosato , Solo , Glicina/metabolismo , Biodegradação Ambiental , Herbicidas/metabolismo , Cátions , Minerais
3.
Saudi J Biol Sci ; 29(4): 2604-2612, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531205

RESUMO

Heavy metal stress is one of the major abiotic stresses that cause environmental pollution in recent decades. An elevated concentration of these heavy metals is highly toxic to plant. Chromium (Cr) is one of the heavy metals whose concentration in the environment is still increasing alarmingly. It is harmful for plant growth and achene yield. To check out the growth and protein alternation towards pollutants, two sunflower varieties (RA-713 and AHO-33) were subjected to different chromium concentrations (control, 200 ppm, 400 ppm) by soil application. This study has elaborated that 400 ppm Cr resulted in a reduction of various growth parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used to enhance the understanding of plant proteomic modulation under Cr stress. Different protein bands like 48 and 49, 26 kDa have newly appeared, and three 60, 47, and 42 kDa, and two protein bands 49 and 13 kDa were up-regulated in seeds of RA-713 and AHO-33, respectively. Some proteins (52, 16 kDa) are down-regulated in leaf tissues of both varieties. Only 6 and 81 kDa protein showed up-regulation and 154 kDa down-regulation behavior in the shoot in response to stress. The finding s of study might support the selection of tolerant genotype under Cr contamination and the discovery of new protein biomarkers that can use as monitoring tools in heavy metal stress biology.

4.
Saudi J Biol Sci ; 29(3): 1869-1880, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280580

RESUMO

Micronutrient deficiency in the soil is one of the major causes of mango fruit and yield's poor quality. Besides, the consumption of such a diet also causes a deficiency of micronutrients in humans. Boron deficiency adversely affects the flowering and pollen tube formation, thus decreasing mango yield and quality attributes. Soil and foliar application of B are considered a productive method to alleviate boron deficiency. A field experiment was conducted to explore the Boron most suitable method and application rate in mango under the current climatic scenario. There were nine treatments applied in three replications. The results showed that application of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) significantly enhanced the nitrogen, potassium, proteins, ash, fats, fiber, and total soluble solids in mango as compared to the control. A significant decrease in sodium, total phenolics contents, antioxidant activity, and acidity as citric acid also validated the effective functioning of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) as compared to control. In conclusion, T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) is a potent strategy to improve the quality attributes of mango under the changing climatic situation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...