Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2014: 394264, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995293

RESUMO

Curcumin is a lipophilic molecule with an active ingredient in the herbal remedy and dietary spice turmeric. It is used by different folks for treatment of many diseases. Recent studies have discussed poor bioavailability of curcumin because of poor absorption, rapid metabolism, and rapid systemic elimination. Nanotechnology is an emerging field that is potentially changing the way we can treat diseases through drug delivery with curcumin. The recent investigations established several approaches to improve the bioavailability, to increase the plasma concentration, and to enhance the cellular permeability processes of curcumin. Several types of nanoparticles have been found to be suitable for the encapsulation or loading of curcumin to improve its therapeutic effects in different diseases. Nanoparticles such as liposomes, polymeric nanoparticles, micelles, nanogels, niosomes, cyclodextrins, dendrimers, silvers, and solid lipids are emerging as one of the useful alternatives that have been shown to deliver therapeutic concentrations of curcumin. This review shows that curcumin's therapeutic effects may increase to some extent in the presence of nanotechnology. The presented board of evidence focuses on the valuable special effects of curcumin on different diseases and candidates it for future clinical studies in the realm of these diseases.


Assuntos
Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanotecnologia , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Disponibilidade Biológica , Curcumina/química , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico
2.
Int J Nanomedicine ; 8: 3383-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24101868

RESUMO

BACKGROUND: The aim of this study was to synthesize Gd(3+)-based silica nanoparticles that conjugate easily with glucosamine and to investigate their use as a nanoprobe for detection of human fibrosarcoma cells. METHODS: Based on the structure of the 2-fluoro-2-deoxy-D-glucose molecule ((18)FDG), a new compound consisting of D-glucose (1.1 nm) was conjugated with a Gd(3+)-based mesoporous silica nanoparticle using an N-5-azido-2-nitrobenzoyloxy succinimide (ANB-NOS) crosslinker The contrast agent obtained was characterized using a variety of methods, including Fourier transform infrared spectroscopy, nitrogen physisorption, thermogravimetric analysis, scanning and transmission electron microscopy, and inductively coupled plasma atomic emission spectrometry (ICP-AES). In vitro studies included cell toxicity, apoptosis, tumor necrosis factor-alpha, and hexokinase assays, and in vivo tests consisted of evaluation of blood glucose levels using the contrast compound and tumor imaging. The cellular uptake study was validated using ICP-AES. Magnetic resonance relaxivity of the contrast agent was determined using a 1.5 Tesla scanner. RESULTS: ANB-NOS was found to be the preferred linker for attaching glucosamine onto the surface of the mesoporous silica nanospheres. The r1 relaxivity for the nanoparticles was 17.70 mM(-1)s(-1) per Gd(3+) ion, which is 4.4 times larger than that for Magnevist® (r1 approximately 4 mM(-1)s(-1) per Gd(3+) ion). The compound showed suitable cellular uptake (75.6% ± 2.01%) without any appreciable cytotoxicity. CONCLUSION: Our results suggest that covalently attaching glucosamine molecules to mesoporous silica nanoparticles enables effective targeted delivery of a contrast agent.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Gadolínio , Glucosamina/farmacocinética , Imageamento por Ressonância Magnética/métodos , Nanoporos/ultraestrutura , Dióxido de Silício/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Meios de Contraste/farmacocinética , Reagentes de Ligações Cruzadas/química , Gadolínio/química , Glucosamina/química , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular/métodos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Int J Nanomedicine ; 8: 2943-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966782

RESUMO

BACKGROUND: [Corrected] Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. METHODS: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. RESULTS: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.


Assuntos
Lipossomos/uso terapêutico , Distrofias Musculares/tratamento farmacológico , Proteína MyoD/uso terapêutico , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Acetato de Glatiramer , Lipossomos/química , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Proteína MyoD/química , Proteína MyoD/farmacologia , Nandrolona/farmacologia , Nanopartículas/química , Tamanho da Partícula , Peptídeos/química , Peptídeos/farmacologia
4.
Int J Nanomedicine ; 8: 3209-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986637

RESUMO

PURPOSE: In recent years, molecular imaging by magnetic resonance imaging (MRI) has gained prominence in the detection of tumor cells. The scope of this study is on molecular imaging and on the cellular uptake study of a glycosylated silica nanoprobe (GSN). METHODS: In this study, intracellular uptake (HT 29 cell line) of GSN was analyzed quantitatively and qualitatively with inductively coupled plasma atomic emission spectroscopy, flow cytometry, and fluorescent microscopy. In vitro and in vivo relaxometry of this nanoparticle was determined using a 3 Tesla MRI; biodistribution of GSN and Magnevist® were measured in different tissues. RESULTS: Results suggest that the cellular uptake of GSN was about 70%. The r1 relaxivity of this nanoparticle in the cells was measured to be 12.9 ± 1.6 mM(-1) s(-1) and on a per lanthanide gadolinium (Gd(3+)) basis. Results also indicate an average cellular uptake of 0.7 ± 0.009 pg Gd(3+) per cell. It should be noted that 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells were effectively labeled without cytotoxicity, and that using MRI for quantitative estimation of delivery and uptake of targeted contrast agents and early detection of human colon cancer cells using targeted contrast agents, is feasible. CONCLUSION: These results showed that GSN provided a critical guideline in selecting these nanoparticles as an appropriate contrast agent for nanomedicine applications.


Assuntos
Meios de Contraste/farmacocinética , Imagem Molecular/métodos , Nanopartículas/química , Dióxido de Silício/farmacocinética , Animais , Meios de Contraste/química , Glucosamina/química , Células HT29 , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Imagens de Fantasmas , Dióxido de Silício/química , Distribuição Tecidual
5.
ISRN Pharm ; 2013: 378452, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533819

RESUMO

Despite the great efforts in the areas of early diagnosis and treatment of cancer, this disease continues to grow and is still a global killer. Cancer treatment efficiency is relatively high in the early stages of the disease. Therefore, early diagnosis is a key factor in cancer treatment. Among the various diagnostic methods, molecular imaging is one of the fastest and safest ones. Because of its unique characteristics, magnetic resonance imaging has a special position in most researches. To increase the contrast of MR images, many pharmaceuticals have been known and used so far. Gadopentetate (with commercial name Magnevist) is the first magnetic resonance imaging contrast media that has been approved by the US Food and Drug Administration. In this study, gadopentetate was first synthesized and then attached to a tree-like polymer called dendrimer which is formed by polyethylene glycol core and surrounding citric acid groups. Stability studies of the drug were carried out to ensure proper synthesis. Then, the uptake of the drug into liver hepatocellular cell line and the drug cytotoxicity were evaluated. Finally, in vitro and in vivo MR imaging were performed with the new synthetic drug. Based on the findings of this research, connecting gadopentetate to dendrimer surface produces a stronger, safer, and more efficient contrast media. Gd(III)-diethylenetriamine pentaacetate-meglumine-dendrimer drug has the ability to enter cells and does not produce significant cytotoxicity. It also increases the relaxivity of tissue and enhances the MR images contrast. The obtained results confirm the hypothesis that the binding of gadopentetate to citric acid dendrimer produces a new, biodegradable, stable, and strong version of the old contrast media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...