Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(40): e202309003, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37572307

RESUMO

We explore a series of furan-based non-fullerene acceptors and report their optoelectronic properties, solid-state packing, photodegradation mechanism and application in photovoltaic devices. Incorporating furan building blocks leads to the expected enhanced backbone planarity, reduced band gap and red-shifted absorption of these acceptors. Still, their position in the molecule is critical for stability and device performance. We found that the photodegradation of these acceptors originates from two distinct pathways: electrocyclic photoisomerization and Diels-Alder cycloaddition of singlet oxygen. These mechanisms are of general significance to most non-fullerene acceptors, and the photostability depends strongly on the molecular structure. Placement of furans next to the acceptor termini leads to better photostability, well-balanced hole/electron transport, and significantly improved device performance. Methylfuran as the linker offers the best photostability and power conversion efficiency (>14 %), outperforming all furan-based acceptors reported to date and all indacenodithiophene-based acceptors. Our findings show the possibility of photostable furan-based alternatives to the currently omnipresent thiophene-based photovoltaic materials.

2.
ACS Appl Mater Interfaces ; 15(15): 19290-19299, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-36944187

RESUMO

Operational instability of organic field-effect transistors (OFETs) is one of the key limitations for applications of printed electronics. Environmental species, especially oxygen and water, unintentionally introduced in the OFET channel, can act as either dopants or traps for charge carriers, affecting the electrical characteristics and stability of devices. Here, we report that intentional doping of the benchmark p-type semiconducting polymer (DPP-DTT) with 2,4,5,7-tetranitrofluorenone (TeNF) markedly improves the operational and environmental stability of OFETs. Electrical interrogation of DPP-DTT OFETs in various environments and at variable temperatures shows suppression of electron-induced traps and increase of hole mobility in oxygen-rich environment, while the water molecules act as traps for positive charge carrier, reducing the hole mobility and significantly shifting the threshold voltage. Doping of DPP-DTT with TeNF suppresses both effects, resulting in environmentally independent performance and superior long-term stability of unencapsulated devices for up to 4 months in ambient air. Furthermore, the doped OFETs exhibit dramatically reduced hysteresis and bias-stressed current drop. Such improvement of the environmental and operational stabilities is ascribed to the mitigation of traps induced by the injected minority carrier (electrons) and the reduction of the majority carrier (hole) traps in doped polymer films due to enhanced microstructural order.

3.
iScience ; 23(8): 101390, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32745990

RESUMO

Photoelectrochemical CO2 reduction into syngas (a mixture of CO and H2) provides a promising route to mitigate greenhouse gas emissions and store intermittent solar energy into value-added chemicals. Design of photoelectrode with high energy conversion efficiency and controllable syngas composition is of central importance but remains challenging. Herein, we report a decoupling strategy using dual cocatalysts to tackle the challenge based on joint computational and experimental investigations. Density functional theory calculations indicate the optimization of syngas generation using a combination of fundamentally distinctive catalytic sites. Experimentally, by integrating spatially separated dual cocatalysts of a CO-generating catalyst and a H2-generating catalyst with GaN nanowires on planar Si photocathode, we report a record high applied bias photon-to-current efficiency of 1.88% and controllable syngas products with tunable CO/H2 ratios (0-10) under one-sun illumination. Moreover, unassisted solar CO2 reduction with a solar-to-syngas efficiency of 0.63% is demonstrated in a tandem photoelectrochemical cell.

4.
Chem Commun (Camb) ; 56(47): 6432-6435, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393948

RESUMO

The nitro group (NO2) is one of the most common electron-withdrawing groups but it has rarely been used in the design of organic semiconductors (OSCs). Herein, we report the n-type semiconducting behavior of simple fluorenone derivatives functionalized with NO2 and CN groups. While the electron mobilities measured in the thin film field-effect transistors are modest (10-6-10-4 cm2 V-1 s-1), the nitrofluorenone OSCs offer excellent air-stability and remarkable tunability of energy levels via facile modification of the substitution pattern. We study the effect of substituents on the electrochemical properties, molecular and crystal structure, and the charge transport properties of nitrofluorenones to revitalize the underestimated potential of NO2 functionalization in organic electronics.

5.
Nat Commun ; 9(1): 3856, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242212

RESUMO

The combination of earth-abundant catalysts and semiconductors, for example, molybdenum sulfides and planar silicon, presents a promising avenue for the large-scale conversion of solar energy to hydrogen. The inferior interface between molybdenum sulfides and planar silicon, however, severely suppresses charge carrier extraction, thus limiting the performance. Here, we demonstrate that defect-free gallium nitride nanowire is ideally used as a linker of planar silicon and molybdenum sulfides to produce a high-quality shell-core heterostructure. Theoretical calculations revealed that the unique electronic interaction and the excellent geometric-matching structure between gallium nitride and molybdenum sulfides enabled an ideal electron-migration channel for high charge carrier extraction efficiency, leading to outstanding performance. A benchmarking current density of 40 ± 1 mA cm-2 at 0 V vs. reversible hydrogen electrode, the highest value ever reported for a planar silicon electrode without noble metals, and a large onset potential of +0.4 V were achieved under standard one-sun illumination.

6.
J Am Chem Soc ; 140(25): 7869-7877, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29905471

RESUMO

Photoelectrochemical (PEC) reduction of CO2 with H2O not only provides an opportunity for reducing net CO2 emissions but also produces value-added chemical feedstocks and fuels. Syngas, a mixture of CO and H2, is a key feedstock for the production of methanol and other commodity hydrocarbons in industry. However, it is challenging to achieve efficient and stable PEC CO2 reduction into syngas with controlled composition owing to the difficulties associated with the chemical inertness of CO2 and complex reaction network of CO2 conversion. Herein, by employing a metal/oxide interface to spontaneously activate CO2 molecule and stabilize the key reaction intermediates, we report a benchmarking solar-to-syngas efficiency of 0.87% and a high turnover number of 24 800, as well as a desirable high stability of 10 h. Moreover, the CO/H2 ratios in the composition can be tuned in a wide range between 4:1 and 1:6 with a total unity Faradaic efficiency. On the basis of experimental measurements and theoretical calculations, we present that the metal/oxide interface provides multifunctional catalytic sites with complementary chemical properties for CO2 activation and conversion, leading to a unique pathway that is inaccessible with the individual components. The present approach opens new opportunities to rationally develop high-performance PEC systems for selective CO2 reduction into valuable carbon-based chemicals and fuels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...