Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(38): 32543-32555, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30148604

RESUMO

Ultrathin nanocomposite films were prepared by combining cellulose nanofibrils (CNFs) prepared from phosphorylated pulp fibers (P-CNF) with montmorillonite (MMT), sepiolite (Sep) clay, or sodium hexametaphosphate (SHMP). The flame-retardant and heat-protective capability of the prepared films as casings for a polyethylene (PE) film was investigated. Heating the coated PE in air revealed that the polymer film was thoroughly preserved up to at least 300 °C. The P-CNF/MMT coatings were also able to completely prevent the ignition of the PE film during cone calorimetry, but neither the P-CNF/Sep nor the P-CNF/SHMP coating could entirely prevent PE ignition. This was explained by the results from combined thermogravimetry Fourier transform infrared spectroscopy, which showed that the P-CNF/MMT film was able to delay the release of PE decomposition volatiles and shift its thermal degradation to a higher temperature. The superior flame-retardant performance of the P-CNF/MMT films is mainly attributed to the unique compositional and structural features of the film, where P-CNF is responsible for increasing the char formation, whereas the MMT platelets create excellent barrier and thermal shielding properties by forming inorganic lamellae within the P-CNF matrix. These films showed a tensile strength of 304 MPa and a Young's modulus of 15 GPa with 10 wt % clay so that this composite film was mechanically stronger than the previously prepared CNF/clay nanopapers containing the same amount of clay.

2.
Nanoscale ; 10(8): 4085-4095, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29431818

RESUMO

Pure cellulosic foams suffer from low thermal stability and high flammability, limiting their fields of application. Here, light-weight and flame-resistant nanostructured foams are produced by combining cellulose nanofibrils prepared from phosphorylated pulp fibers (P-CNF) with microfibrous sepiolite clay using the freeze-casting technique. The resultant nanocomposite foams show excellent flame-retardant properties such as self-extinguishing behavior and extremely low heat release rates in addition to high flame penetration resistance attributed mainly to the intrinsic charring ability of the phosphorylated fibrils and the capability of sepiolite to form heat-protective intumescent-like barrier on the surface of the material. Investigation of the chemical structure of the charred residue by FTIR and solid state NMR spectroscopy reveals the extensive graphitization of the carbohydrate as a result of dephosphorylation of the modified cellulose and further dehydration due to acidic catalytic effects. Originating from the nanoscale dimensions of sepiolite particles, their high specific surface area and stiffness as well as its close interaction with the phosphorylated fibrils, the incorporation of clay nanorods also significantly improves the mechanical strength and stiffness of the nanocomposite foams. The novel foams prepared in this study are expected to have great potential for application in sustainable building construction.

3.
Biomacromolecules ; 16(10): 3399-410, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26402379

RESUMO

Cellulose from wood fibers can be modified for use in flame-retardant composites as an alternative to halogen-based compounds. For this purpose, sulfite dissolving pulp fibers have been chemically modified by phosphorylation, and the resulting material has been used to prepare cellulose nanofibrils (CNF) that have a width of approximately 3 nm. The phosphorylation was achieved using (NH4)2HPO4 in the presence of urea, and the degree of substitution by phosphorus was determined by X-ray photoelectron spectroscopy, conductometric titration, and nuclear magnetic resonance spectroscopy. The presence of phosphate groups in the structure of CNF has been found to noticeably improve the flame retardancy of this material. The nanopaper sheets prepared from phosphorylated CNF showed self-extinguishing properties after consecutive applications of a methane flame for 3 s and did not ignite under a heat flux of 35 kW/m2, as shown by flammability and cone calorimetry measurements, respectively.


Assuntos
Celulose/química , Retardadores de Chama , Nanofibras , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Fosforilação , Análise Espectral/métodos , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...