Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(15): 10473-10496, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427891

RESUMO

TYK2 is a key mediator of IL12, IL23, and type I interferon signaling, and these cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genome-wide association studies and clinical results, TYK2 inhibition through small molecules is an attractive therapeutic strategy to treat these diseases. Herein, we report the discovery of a series of highly selective pseudokinase (Janus homology 2, JH2) domain inhibitors of TYK2 enzymatic activity. A computationally enabled design strategy, including the use of FEP+, was instrumental in identifying a pyrazolo-pyrimidine core. We highlight the utility of computational physics-based predictions used to optimize this series of molecules to identify the development candidate 30, a potent, exquisitely selective cellular TYK2 inhibitor that is currently in Phase 2 clinical trials for the treatment of psoriasis and psoriatic arthritis.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Psoríase , Humanos , TYK2 Quinase , Estudo de Associação Genômica Ampla , Doenças Autoimunes/tratamento farmacológico , Psoríase/tratamento farmacológico
2.
J Chem Theory Comput ; 17(4): 2630-2639, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33779166

RESUMO

We present a reliable and accurate solution to the induced fit docking problem for protein-ligand binding by combining ligand-based pharmacophore docking, rigid receptor docking, and protein structure prediction with explicit solvent molecular dynamics simulations. This novel methodology in detailed retrospective and prospective testing succeeded to determine protein-ligand binding modes with a root-mean-square deviation within 2.5 Å in over 90% of cross-docking cases. We further demonstrate these predicted ligand-receptor structures were sufficiently accurate to prospectively enable predictive structure-based drug discovery for challenging targets, substantially expanding the domain of applicability for such methods.


Assuntos
Simulação de Acoplamento Molecular , Proteínas/química , Ligantes , Ligação Proteica
3.
Bioorg Med Chem ; 34: 115990, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33549906

RESUMO

Destabilizing mutations in small heat shock proteins (sHsps) are linked to multiple diseases; however, sHsps are conformationally dynamic, lack enzymatic function and have no endogenous chemical ligands. These factors render sHsps as classically "undruggable" targets and make it particularly challenging to identify molecules that might bind and stabilize them. To explore potential solutions, we designed a multi-pronged screening workflow involving a combination of computational and biophysical ligand-discovery platforms. Using the core domain of the sHsp family member Hsp27/HSPB1 (Hsp27c) as a target, we applied mixed solvent molecular dynamics (MixMD) to predict three possible binding sites, which we confirmed using NMR-based solvent mapping. Using this knowledge, we then used NMR spectroscopy to carry out a fragment-based drug discovery (FBDD) screen, ultimately identifying two fragments that bind to one of these sites. A medicinal chemistry effort improved the affinity of one fragment by ~50-fold (16 µM), while maintaining good ligand efficiency (~0.32 kcal/mol/non-hydrogen atom). Finally, we found that binding to this site partially restored the stability of disease-associated Hsp27 variants, in a redox-dependent manner. Together, these experiments suggest a new and unexpected binding site on Hsp27, which might be exploited to build chemical probes.


Assuntos
Proteínas de Choque Térmico/química , Modelos Químicos , Chaperonas Moleculares/química , Simulação de Dinâmica Molecular , Sítios de Ligação , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Reprodutibilidade dos Testes
4.
J Chem Inf Model ; 60(9): 4311-4325, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32484669

RESUMO

The hit identification process usually involves the profiling of millions to more recently billions of compounds either via traditional experimental high-throughput screens (HTS) or computational virtual high-throughput screens (vHTS). We have previously demonstrated that, by coupling reaction-based enumeration, active learning, and free energy calculations, a similarly large-scale exploration of chemical space can be extended to the hit-to-lead process. In this work, we augment that approach by coupling large scale enumeration and cloud-based free energy perturbation (FEP) profiling with goal-directed generative machine learning, which results in a higher enrichment of potent ideas compared to large scale enumeration alone, while simultaneously staying within the bounds of predefined drug-like property space. We can achieve this by building the molecular distribution for generative machine learning from the PathFinder rules-based enumeration and optimizing for a weighted sum QSAR-based multiparameter optimization function. We examine the utility of this combined approach by designing potent inhibitors of cyclin-dependent kinase 2 (CDK2) and demonstrate a coupled workflow that can (1) provide a 6.4-fold enrichment improvement in identifying <10 nM compounds over random selection and a 1.5-fold enrichment in identifying <10 nM compounds over our previous method, (2) rapidly explore relevant chemical space outside the bounds of commercial reagents, (3) use generative ML approaches to "learn" the SAR from large scale in silico enumerations and generate novel idea molecules for a flexible receptor site that are both potent and within relevant physicochemical space, and (4) produce over 3 000 000 idea molecules and run 1935 FEP simulations, identifying 69 ideas with a predicted IC50 < 10 nM and 358 ideas with a predicted IC50 < 100 nM. The reported data suggest combining both reaction-based and generative machine learning for ideation results in a higher enrichment of potent compounds over previously described approaches and has the potential to rapidly accelerate the discovery of novel chemical matter within a predefined potency and property space.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas , Simulação por Computador , Objetivos , Aprendizado de Máquina
5.
JCI Insight ; 4(12)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31217352

RESUMO

Inhibition of Bruton tyrosine kinase (BTK) is a breakthrough therapy for certain B cell lymphomas and B cell chronic lymphatic leukemia. Covalent BTK inhibitors (e.g., ibrutinib) bind to cysteine C481, and mutations of this residue confer clinical resistance. This has led to the development of noncovalent BTK inhibitors that do not require binding to cysteine C481. These new compounds are now entering clinical trials. In a systematic BTK mutagenesis screen, we identify residues that are critical for the activity of noncovalent inhibitors. These include a gatekeeper residue (T474) and mutations in the kinase domain. Strikingly, co-occurrence of gatekeeper and kinase domain lesions (L512M, E513G, F517L, L547P) in cis results in a 10- to 15-fold gain of BTK kinase activity and de novo transforming potential in vitro and in vivo. Computational BTK structure analyses reveal how these lesions disrupt an intramolecular mechanism that attenuates BTK activation. Our findings anticipate clinical resistance mechanisms to a new class of noncovalent BTK inhibitors and reveal intramolecular mechanisms that constrain BTK's transforming potential.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Transformação Celular Neoplásica , Cisteína/metabolismo , Células HEK293 , Humanos , Camundongos , Mutagênese , Domínios Proteicos , Relação Estrutura-Atividade
6.
J Chem Inf Model ; 59(5): 2035-2045, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31017411

RESUMO

In our recent efforts to map protein surfaces using mixed-solvent molecular dynamics (MixMD) (Ghanakota, P.; Carlson, H. A. Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems. J. Phys. Chem. B 2016, 120, 8685-8695), we were able to successfully capture active sites and allosteric sites within the top-four most occupied hotspots. In this study, we describe our approach for estimating the thermodynamic profile of the binding sites identified by MixMD. First, we establish a framework for calculating free energies from MixMD simulations, and we compare our approach to alternative methods. Second, we present a means to obtain a relative ranking of the binding sites by their configurational entropy. The theoretical maximum and minimum free energy and entropy values achievable under such a framework along with the limitations of the techniques are discussed. Using this approach, the free energy and relative entropy ranking of the top-four MixMD binding sites were computed and analyzed across our allosteric protein targets: Abl Kinase, Androgen Receptor, Pdk1 Kinase, Farnesyl Pyrophosphate Synthase, Chk1 Kinase, Glucokinase, and Protein Tyrosine Phosphatase 1B.


Assuntos
Entropia , Simulação de Dinâmica Molecular , Proteínas/química , Solventes/química , Sítios de Ligação , Conformação Proteica
7.
J Chem Inf Model ; 58(4): 784-793, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29617116

RESUMO

The ability to target protein-protein interactions (PPIs) with small molecule inhibitors offers great promise in expanding the druggable target space and addressing a broad range of untreated diseases. However, due to their nature and function of interacting with protein partners, PPI interfaces tend to extend over large surfaces without the typical pockets of enzymes and receptors. These features present unique challenges for small molecule inhibitor design. As such, determining whether a particular PPI of interest could be pursued with a small molecule discovery strategy requires an understanding of the characteristics of the PPI interface and whether it has hotspots that can be leveraged by small molecules to achieve desired potency. Here, we assess the ability of mixed-solvent molecular dynamic (MSMD) simulations to detect hotspots at PPI interfaces. MSMD simulations using three cosolvents (acetonitrile, isopropanol, and pyrimidine) were performed on a large test set of 21 PPI targets that have been experimentally validated by small molecule inhibitors. We compare MSMD, which includes explicit solvent and full protein flexibility, to a simpler approach that does not include dynamics or explicit solvent (SiteMap) and find that MSMD simulations reveal additional information about the characteristics of these targets and the ability for small molecules to inhibit the PPI interface. In the few cases were MSMD simulations did not detect hotspots, we explore the shortcomings of this technique and propose future improvements. Finally, using Interleukin-2 as an example, we highlight the advantage of the MSMD approach for detecting transient cryptic druggable pockets that exists at PPI interfaces.


Assuntos
Simulação de Dinâmica Molecular , Mapas de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo , Solventes/química , Interleucina-2/química , Interleucina-2/metabolismo , Conformação Proteica
8.
J Comput Aided Mol Des ; 31(11): 979-993, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29047011

RESUMO

NMR and X-ray crystallography are the two most widely used methods for determining protein structures. Our previous study examining NMR versus X-Ray sources of protein conformations showed improved performance with NMR structures when used in our Multiple Protein Structures (MPS) method for receptor-based pharmacophores (Damm, Carlson, J Am Chem Soc 129:8225-8235, 2007). However, that work was based on a single test case, HIV-1 protease, because of the rich data available for that system. New data for more systems are available now, which calls for further examination of the effect of different sources of protein conformations. The MPS technique was applied to Growth factor receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore models from both crystal and NMR ensembles were able to discriminate between high-affinity, low-affinity, and decoy molecules. As we found in our original study, NMR models showed optimal performance when all elements were used. The crystal models had more pharmacophore elements compared to their NMR counterparts. The crystal-based models exhibited optimum performance only when pharmacophore elements were dropped. This supports our assertion that the higher flexibility in NMR ensembles helps focus the models on the most essential interactions with the protein. Our studies suggest that the "extra" pharmacophore elements seen at the periphery in X-ray models arise as a result of decreased protein flexibility and make very little contribution to model performance.


Assuntos
Proteína Adaptadora GRB2/química , Modelos Moleculares , PPAR gama/química , Proteína 1A de Ligação a Tacrolimo/química , Sítios de Ligação , Cristalografia por Raios X , Bases de Dados Factuais , Desenho de Fármacos , Proteína Adaptadora GRB2/agonistas , Proteína Adaptadora GRB2/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Proteína 1A de Ligação a Tacrolimo/antagonistas & inibidores , Domínios de Homologia de src
9.
J Med Chem ; 59(23): 10383-10399, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27486927

RESUMO

Identifying binding hotspots on protein surfaces is of prime interest in structure-based drug discovery, either to assess the tractability of pursuing a protein target or to drive improved potency of lead compounds. Computational approaches to detect such regions have traditionally relied on energy minimization of probe molecules onto static protein conformations in the absence of the natural aqueous environment. Advances in high performance computing now allow us to assess hotspots using molecular dynamics (MD) simulations. MD simulations integrate protein flexibility and the complicated role of water, thereby providing a more realistic assessment of the complex kinetics and thermodynamics at play. In this review, we describe the evolution of various cosolvent-based MD techniques and highlight a myriad of potential applications for such technologies in computational drug development.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular
10.
J Phys Chem B ; 120(33): 8685-95, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27258368

RESUMO

Mixed-solvent molecular dynamics (MixMD) is a hotspot-mapping technique that relies on molecular dynamics simulations of proteins in binary solvent mixtures. Previous work on MixMD has established the technique's effectiveness in capturing binding sites of small organic compounds. In this work, we show that MixMD can identify both competitive and allosteric sites on proteins. The MixMD approach embraces full protein flexibility and allows competition between solvent probes and water. Sites preferentially mapped by probe molecules are more likely to be binding hotspots. There are two important requirements for the identification of ligand-binding hotspots: (1) hotspots must be mapped at very high signal-to-noise ratio and (2) the hotspots must be mapped by multiple probe types. We have developed our mapping protocol around acetonitrile, isopropanol, and pyrimidine as probe solvents because they allowed us to capture hydrophilic, hydrophobic, hydrogen-bonding, and aromatic interactions. Charged probes were needed for mapping one target, and we introduce them in this work. In order to demonstrate the robust nature and wide applicability of the technique, a combined total of 5 µs of MixMD was applied across several protein targets known to exhibit allosteric modulation. Most notably, all the protein crystal structures used to initiate our simulations had no allosteric ligands bound, so there was no preorganization of the sites to predispose the simulations to find the allosteric hotspots. The protein test cases were ABL Kinase, Androgen Receptor, CHK1 Kinase, Glucokinase, PDK1 Kinase, Farnesyl Pyrophosphate Synthase, and Protein-Tyrosine Phosphatase 1B. The success of the technique is demonstrated by the fact that the top-four sites solely map the competitive and allosteric sites. Lower-ranked sites consistently map other biologically relevant sites, multimerization interfaces, or crystal-packing interfaces. Lastly, we highlight the importance of including protein flexibility by demonstrating that MixMD can map allosteric sites that are not detected in half the systems using FTMap applied to the same crystal structures.


Assuntos
Regulação Alostérica , Domínio Catalítico , Simulação de Dinâmica Molecular , 2-Propanol/química , Acetonitrilas/química , Quinase 1 do Ponto de Checagem/química , Quinase 1 do Ponto de Checagem/metabolismo , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Glucoquinase/química , Glucoquinase/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Pirimidinas/química , Piruvato Desidrogenase Quinase de Transferência de Acetil , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Solventes/química , Água/química
11.
Biopolymers ; 105(1): 21-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26385317

RESUMO

Mixed-solvent molecular dynamics (MixMD) simulations use full protein flexibility and competition between water and small organic probes to achieve accurate hot-spot mapping on protein surfaces. In this study, we improved MixMD using human immunodeficiency virus type-1 protease (HIVp) as the test case. We used three probe-water solutions (acetonitrile-water, isopropanol-water, and pyrimidine-water), first at 50% w/w concentration and later at 5% v/v. Paradoxically, better mapping was achieved by using fewer probes; 5% simulations gave a superior signal-to-noise ratio and far fewer spurious hot spots than 50% MixMD. Furthermore, very intense and well-defined probe occupancies were observed in the catalytic site and potential allosteric sites that have been confirmed experimentally. The Eye site, an allosteric site underneath the flap of HIVp, has been confirmed by the presence of a 5-nitroindole fragment in a crystal structure. MixMD also mapped two additional hot spots: the Exo site (between the Gly16-Gly17 and Cys67-Gly68 loops) and the Face site (between Glu21-Ala22 and Val84-Ile85 loops). The Exo site was observed to overlap with crystallographic additives such as acetate and dimethyl sulfoxide that are present in different crystal forms of the protein. Analysis of crystal structures of HIVp in different symmetry groups has shown that some surface sites are common interfaces for crystal contacts, which means that they are surfaces that are relatively easy to desolvate and complement with organic molecules. MixMD should identify these sites; in fact, their occupancy values help establish a solid cut-off where "druggable" sites are required to have higher occupancies than the crystal-packing faces.


Assuntos
Protease de HIV/química , HIV-1/enzimologia , Simulação de Dinâmica Molecular , 2-Propanol/química , Acetonitrilas/química , Humanos , Água/química
12.
Mol Pharm ; 12(9): 3399-407, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26262434

RESUMO

Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and preclinical development of ester prodrugs.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Inibidores Enzimáticos/farmacologia , Ésteres/farmacologia , Oseltamivir/farmacologia , Pró-Fármacos/farmacologia , Animais , Linhagem Celular , Humanos , Hidrólise , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Cinética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...